A New Framework for Solving En-Route Conflicts

Cyril Allignol, Nicolas Barnier, Nicolas Durand and Jean-Marc Alliot allignol,barnier,durand@recherche.enac.fr jean-marc.alliot@irit.fr

> ATM 2013 – Chicago June 12th, 2013

Introduction

The conflict resolution problem

Make sure than any 2 aircraft do not get closer to each other than a given *separation norm* (usually 5NM horizontally).

Introduction

The conflict resolution problem

Make sure than any 2 aircraft do not get closer to each other than a given *separation norm* (usually 5NM horizontally).

- Widely studied in the last two decades
- Relies on a realistic trajectory prediction (handling of uncertainties)
- Model is (too) often closely linked to the resolution method

Introduction

The conflict resolution problem

Make sure than any 2 aircraft do not get closer to each other than a given *separation norm* (usually 5NM horizontally).

- Widely studied in the last two decades
- Relies on a realistic trajectory prediction (handling of uncertainties)
- Model is (too) often closely linked to the resolution method

We propose...

- A new framework that separates the model from the resolution
- A public benchmark
- Two approaches to the problem resolution

Allignol, Barnier, Durand, Alliot (ÉNAC) Framework

Contents

1 Benchmark

Trajectory Prediction Scenarios Conflict Detection

2 Resolution

Evolutionary Algorithm Constraint Programming Results

3 Conclusion

Trajectories

Trajectories are...

- defined in the horizontal plane
- sampled into time steps of duration $\boldsymbol{\tau}$
- from origin O to destination D

 ${\it O}$ and ${\it D}$ can be any 2 successive waypoints in the aircraft route.

In the proposed benchmark, $\tau = 3 \text{ s}$ in order to be able to catch even the shortest conflicts (two facing aircraft at maximal speed)

Maneuver model

- n_0 possible values for d_0
- n_1 possible values for d_1
- n_{α} possible values for α

Possible maneuvers per aircraft:

$$n_{\mathsf{man}} = n_0 \times n_1 \times (n_\alpha - 1) + 1$$

Handling Uncertainties

Uncertainties on maneuvers and speed

- Maneuver starts at $d_o \pm \varepsilon_0$
- Maneuver distance is $d_1 \pm \varepsilon_1$
- Maneuver angle is $\alpha \pm \varepsilon_{\alpha}$
- Speed is $s \pm \varepsilon_s$

Trajectory hull model

At each time step τ , aircraft position is a modelled as a convex hull containing all possible positions

- Red: aircraft did not turn yet
- Green: aircraft is being maneuvered
- Blue: aircraft is heading towards destination again

Model

Decision variables

$$M = \{m_i, i \in [1, n]\}$$

 $\forall i, m_i \in [1, n_{man}] \longrightarrow \text{size of the search space: } n_{man}^n$

Optimization

• Cost of a single maneuver:

$$\mathsf{cost}_{\mathsf{man}}(m_i) = \begin{cases} 0 & \text{if } \alpha = 0\\ (n_0 - k_0)^2 + k_1^2 + k_\alpha^2 & \text{otherwise} \end{cases}$$

where m_i is the maneuver described by the tuple $\langle k_0, k_1, k_\alpha \rangle$

• Total cost:

$$\mathsf{cost} = \sum_{i=1}^n \mathsf{cost}_{\mathsf{man}}(m_i)$$

Allignol, Barnier, Durand, Alliot (ÉNAC)

Versatility

This model can be easily modified and refined with:

- other trajectory prediction methods
- other modelings for uncertainties
- different kinds of maneuvers
- other cost functions (fuel consumption, CO₂ emission, delay...)

Scenarios

Scenarios

Conflict Detection

```
Conflict between trajectories t_i and t_j
for all time steps \tau do
if dist(convex_hull(m_i, \tau), convex_hull(m_j, \tau)) < 5NM then
return true
end if
end for
return false
```

Given n aircraft, a 4D matrix C is built:

 $\begin{aligned} &\forall i,j\in[1,n],\ i< j\\ &\forall m_i,m_j\in[1,n_{\max}] \text{ where } m_i,m_j \text{ are maneuvers of aircraft } i \text{ and } j \end{aligned} \\ \end{aligned}$

 $C_{i,j,m_i,m_j} = \begin{cases} \text{true} & \text{if there is a conflict between those trajectories} \\ \text{false} & \text{otherwise} \end{cases}$

For a given set of parameters, matrix ${\it C}$ forms the benchmark for the corresponding instance.

For a given set of parameters, matrix ${\it C}$ forms the benchmark for the corresponding instance.

Instance files and current results available at: http://clusters.recherche.enac.fr

For a given set of parameters, matrix ${\it C}$ forms the benchmark for the corresponding instance.

Instance files and current results available at: http://clusters.recherche.enac.fr

Currently available instances:

- $n \in \{5, 10, 15, 20\}$
- $n_{man} = 151$

•
$$\varepsilon \in \{\varepsilon_{\text{low}}, \varepsilon_{\text{mid}}, \varepsilon_{\text{high}}\}$$

 $\varepsilon_{\text{low}} : \varepsilon_0 = 1 \text{NM}, \varepsilon_1 = 1 \text{NM}, \varepsilon_\alpha = 1^\circ, \varepsilon_s = 1\%$
 $\varepsilon_{\text{mid}} : \varepsilon_0 = 2 \text{NM}, \varepsilon_1 = 2 \text{NM}, \varepsilon_\alpha = 2^\circ, \varepsilon_s = 2\%$
 $\varepsilon_{\text{high}} : \varepsilon_0 = 3 \text{NM}, \varepsilon_1 = 3 \text{NM}, \varepsilon_\alpha = 3^\circ, \varepsilon_s = 3\%$

More to come...

Resolution

Contents

Benchmark

Trajectory Prediction Scenarios Conflict Detection

2 Resolution

Evolutionary Algorithm Constraint Programming Results

Onclusion

Evolutionary Algorithm

Inspired by natural evolution: manipulation of a population of candidate solutions with selection, crossover and mutation operators

Fitness function

$$F = \begin{cases} \frac{1}{2 + \sum_{i < j} C_{i,j,m_i,m_j}} & \text{if } \exists (i,j), \ i < j, \ C_{i,j,m_i,m_j} \neq 0\\ \frac{1}{2} + \frac{1}{1 + \text{cost}} & \text{if } \forall (i,j), \ i < j, \ C_{i,j,m_i,m_j} = 0 \end{cases}$$

- Using a *sharing* process to avoid premature convergence towards local optima
- Taking advantage of *partial separability* of the cost function to build adapted crossover and mutation operators

Constraint Programming

CSP Model

- Variables: $M = \{m_i, i \in [1, n]\}$
- Domains: $\forall i, m_i \in [1, n_{man}]$
- Constraints: $\forall (i,j), c_{i,j} = \{(k,l) \mid C_{i,j,k,l} = 1\}$

We note $|c_{i,j}|$ the cardinality of the constraint $c_{i,j}$

Solution search and Optimization

- Branch and Bound
- Weighted degree adaptative heuristic

Optimality proof obtained for most instances

Resolution Results

A solution to a 10-aircraft conflict

Cost of solutions

Average on 10 instances with the same parameters.

	n											
	5	10	1	5	20							
	CP EA	CP EA	CP	EA	CP	EA						
$\varepsilon_{\rm low}$	5.3	29.8	86.3	86.8	185.8	176.9						
$\varepsilon_{\mathrm{med}}$	4.2	46.6	104.0	104.0	267.6	282.8						
$\varepsilon_{\mathrm{high}}$	5.1	45.7	170.4	156.3	299.0	305.0						

- Each maneuver has a cost in the interval $\left[0,50\right]$
- CP and EA equivalently efficient

Cost of solutions

The cost is closely related to the number of forbidden maneuver pairs. We define the *intrinsic difficulty* of an instance by:

$$\rho = \sum_{i < j} |c_{ij}|$$

Cost of solutions

The cost is closely related to the number of forbidden maneuver pairs. We define the *intrinsic difficulty* of an instance by:

$$\rho = \sum_{i < j} |c_{ij}|$$

Results

Computing times for finding best solution

All runs were limited to 5 minutes.

Average on 10 instances with the same parameters.

	n											
	5		10		15		20					
	CP	EA	CP	EA	CP	EA	CP	EA				
$\varepsilon_{\rm low}$	0.00	0.02	0.22	0.97	24.08	2.01	75.14	95.98				
$\varepsilon_{\mathrm{med}}$	0.00	0.02	0.27	1.44	45.17	32.60	79.61	184.61				
$\varepsilon_{\mathrm{high}}$	0.00	0.02	1.04	0.37	48.59	93.19	58.44	274.16				

- Unfeasible instances are proved inconsistent (CP only) within 1 second \Rightarrow possibility to generate a new instance with more maneuvers allowed
- A first solution is found within seconds for almost all instances

Conclusions

- A new framework for conflict resolution
- Separation of the model from its resolution
- Many configuration opportunities
- Benchmark available at: http://clusters.recherche.enac.fr
- Two possible approaches for the resolution: Constraint Programming and Evolutionary Algorithm
- Optimality proof obtained for most instances with CP

Further Work

- Vertical maneuvers
- Scenarios issued from real data (simulated flight plans)
- Embedded resolution (i.e. integration into fast-time simulator)
- Tabu Search algorithm, hybridization