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Abstract—Disruptions in the air transportation system, perhaps
due to extreme weather, often result in unexpected, or off-
nominal, delays at airports. A resilient air traffic management
system seeks to restore airport delays to their nominal values
quickly after such disruptions. Two primary factors make the
design of efficient recovery algorithms for air transportation
networks challenging: the lack of a high-fidelity model for
predicting and controlling airport delay dynamics, and poor
computational tractability of large-scale flight rescheduling opti-
mization problems. We propose a two-stage hierarchical control
strategy for rescheduling aircraft (i.e., assigning delays) after
network disruptions. Our high-level planner leverages a low-
fidelity approximation of airport delay dynamics to propose a
reference plan based on user preferences. This reference plan
accounts for complex objectives such as ensuring a “smooth”
redistribution of delays across airports (quantified by the total
variation). The low-level controller then solves the multi-airport
ground holding problem (MAGHP), augmented to track the
reference plan. The solution to the augmented MAGHP yields
a revised flight schedule with lower total variation than the
original MAGHP, while still satisfying operational constraints.
We illustrate the benefits of our proposed methodology using six
disruption case studies of the National Airspace System (NAS).
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I. INTRODUCTION

Air transportation is a critical infrastructure whose safe
and efficient functioning is essential in the modern world.
However, as with any large-scale system, disruptions and
inefficiencies are also a part of the aviation infrastructure.
Disruptions may be triggered by several factors, ranging from
security and maintenance issues, airport equipment outages,
or more commonly, poor weather. These disruptions result
in reduced airport and airspace capacity, leading to demand-
capacity imbalances. Such imbalances necessitate the imple-
mentation of traffic management initiatives (TMIs), resulting
in flight delays, and in extreme cases, cancellations [1].

Flight delays and cancellations carry consequential, quan-
tifiable costs for passengers, airlines, and the environment.
In 2018, more than 2 million flights were delayed in the US
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alone, resulting in more than $30 billion in direct and indirect
costs to passengers and airlines [2]. Swiftly recovering and
restoring nominal performance after a disruption is critical.
One of the key steps in system recovery is allocating limited
airport and airspace sector capacity to the affected flights.
Airport capacity is a critical bottleneck in the US National
Airspace System (NAS), so we focus on airport capacities and
delays in this paper [3]. Since every flight requires multiple
resources in a sequential, coordinated fashion, identifying
revised schedules that maximize resource utilization can be
solved as an optimization problem. In this paper, we focus on
the multi-airport ground holding problem (MAGHP), which is
solved to allocate the limited landing and takeoff capacity at
airports to disrupted flights [4], [5]. In particular, we propose
an integrated data-driven control framework that augments the
MAGHP with a reference plan determined by a high-level
planner.

A. Motivation

The objective of the standard MAGHP is to minimize the
total delay cost for the system while ensuring that airport
capacity constraints are not violated. However, recent works
suggest that minimizing the total system delays is a necessary,
but not sufficient, criterion for recovery. For example, the
spatial distribution of delays across airports has also been
found to be an important measure of system disruption and
recovery [6]. Unfortunately, incorporating the spatial distribu-
tion of delays into the MAGHP results in a computationally
intractable optimization problem (Section III-B).

In this paper, we aim to develop a computationally scalable
methodology that identifies flight schedules that not only
minimize total system delay costs, but can also achieve
other desirable objectives such as reducing the disparity in
delays at airports, capping delays at specific airports, or
even attempting to redistribute periods of peak delays to
more favorable time slots. Our proposed methodology can
be helpful to airlines in customizing their recovery process
based on operational requirements. For example, an airline
might want to protect its hub airports from high delays
by transferring delays to other non-hub airports, perhaps
with a small penalty in overall efficiency. Real-time decision
support tools that mathematically capture and implement such
preferences can facilitate robust recovery from disruptions.



B. Background and prior works

The MAGHP and its variants have been studied by several
researchers [4], [5]. Prior works include analyzing solu-
tion sensitivity to delay [7] or sector utilization costs [8],
and factoring in stochastic capacities [9]. Other extensions
consider airline scheduling behaviors such as departure and
arrival banks [10], as well as notions of fairness [11]–[13].
These studies primarily consider the magnitude of delays as
a measure of system inefficiency and seek to minimize it.
Recently, other aspects of system performance (e.g., spatial
impact, fairness) have gained prominence. In [6], the au-
thors examine spatial distributions of airport delays as an
important attribute of the system from a network-wide and
airline-specific perspective. In particular, smooth observations
of airport delay signals, with respect to historical delay
correlations, provide insights into disruption management
and recovery. However, traditional MAGHP formulations are
unable to tractably incorporate metrics that reflect spatial
delay characteristics.

Air traffic management involves decision-making at mul-
tiple spatial and temporal scales [14]. For example, system
disruptions and recoveries involve strategically planning hours
into the future to allocate limited resources such as airport and
airspace capacity. However, since disruptive events such as
weather are often difficult to predict, these strategic measures
are augmented with tactical actions by traffic flow managers
and air traffic controllers, who assign reroutes or airborne
holding [15]. As part of the Collaborative Decision-Making
(CDM) process, airlines respond to these actions by swapping
slots, aircraft, and crew; the goal is to minimize the impact of
the evolving disruption on airline operations [16], [17]. Con-
trol of the air traffic management system at the sector-level or
flow-level has been considered in previous studies [18]–[20].
Our approach adapts the idea of hierarchical controllers to
incorporate objectives such as “smooth” delay distributions
and customized airport recovery targets into the disruption-
recovery process. We propose a layered control structure: A
high-level layer that provides an unconstrained reference plan
for NAS delays, which is then given to a low-level layer that
constrains the plan to determine a flight schedule.

II. PROBLEM SETUP

Consider a set of flights scheduled to operate between a
set of airports, all with known departure and arrival times.
During disruptions, capacities at a subset of airports decrease,
requiring some of these flights to be rescheduled. In this
paper, we assume a time discretization of 15-minute intervals,
in alignment with common on-time-performance metrics such
as A14 [21]. The reduced capacities induce delays at airports,
and we denote the delay (sum of departure and arrival delays)
at airport i at time t as x(t)
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The notion of controlling airport delays via redistribution
may be counter-intuitive, since delays are accrued quantities
based on differences in scheduled versus actual arrival (or
departure) times. This is in contrast to physical quantities
(e.g., number of bikes at a bike-share station) where redistri-
bution notions are more natural. To illustrate what we mean
by redistributing airport delays, we provide the following
example of how rescheduling flights can alter the delay vector
x(t) such that delays appear to have shifted from one airport
to another.

Example: Let fA!C and fB!C be two flights from airports
A and B to destination airport C, respectively, both with
2-hour flight times. Both fA!C and fB!C are scheduled
to depart at 4:00 pm and arrive at C at 6:00 pm. Suppose
that airport C can accept one aircraft at 6:00 pm and another
aircraft at 6:15. This results in two possibilities: We can assign
the 6:00 pm arrival slot to fA!C (allowing it to depart as
planned) and the 6:15 arrival slot to fB!C , or swap their
orders. Note that both possibilities involve a 15-minute arrival
delay at airport C (assuming no time is made up en route),
but we have flexibility in determining whether airport A or
B receives a departure delay of 15 minutes. This simple
example depicts how airport delays can be redistributed per
user preferences.

A. Challenges to be addressed

While incorporating efficiency and notions of airport delay
smoothness within the standard MAGHP may seem straight-
forward, the resultant nonlinear optimization problem is com-
putationally intractable at scale. Hence, our solution approach
is to solve the problem in two stages. First, we identify a
candidate reference plan for NAS delays at time t, denoted
by x

(t)
? , that can incorporate a variety of user preferences, but

has no knowledge of—and is unconstrained by—actual flight
schedules. Next, we generate an actual feasible schedule by
solving an augmented MAGHP with an additional objective
term that attempts to track x

(t)
? at each time step t. Our

approach tackles two key challenges:
Challenge #1: Identifying a reference plan x

(t)
? at each time

t that can be realized by a feasible flight schedule requires
a model for the system dynamics, which is often unavailable
in such large-scale, stochastic, interconnected systems.

Challenge #2: Identifying a flight schedule that achieves
some complex, possibly nonlinear, objectives may not be
feasible through a standard implementation of MAGHP.

B. Solution framework

We present our hierarchical control framework in Fig. 1.
The left-hand side of Fig. 1 provides an overview, wherein
traffic flow management control actions are inputs into the
NAS and result in observable performance metrics such as
flight delays. Such real-time monitoring of the NAS has



become possible with initiatives such as System Wide In-
formation Management (SWIM), the data-sharing backbone
maintained by the FAA [22].

Our key contribution lies in the hierarchical design of the
traffic flow management planning and control stages, i.e., the
high-level planner and low-level controller blocks in Fig.
1, respectively. Out high-level planner, detailed in Section
III-A), (1) provides a low-fidelity approximate model for
the NAS state, as defined by the airport delays; and (2)
allows for a wide range of user preferences in determining
the NAS state evolution. In particular, the high-level planner
can incorporate non-linear objectives (e.g., control the spatial
distribution of delays or conditionally control delays at a
subset of airports) and provide a reference plan for the NAS
state in a computationally tractable manner. This addresses
the first challenge we identified.

Our high-level planner incorporates some knowledge and
assumptions regarding NAS delay dynamics (e.g., airport
delays should be “continuous” across time), but it ignores
the actual flight schedules and demands. While this enables
computational tractability and application of customized user
preferences, the high-level planner may provide a reference
plan that is impossible for the low-level controller to exactly
adhere to. Thus, to ensure that we generate a feasible sched-
ule, we provide the high-level reference plan as a “weak”
guidance to augment a low-level MAGHP controller. This
approach is described in greater detail in Section III-B,
and addresses the second challenge we identified. This hi-
erarchical relationship between the high-level planner (more
expressive, but potentially unrealistic) and low-level controller
(more restrictive, but provides an actual adjusted schedule)
forms the crux of our solution framework.

III. METHODOLOGY

A. High-level planner

Recall that our goal is to design a high-level planner that
uses an approximate model for NAS delay states, combined
with a design strategy, in order to propose a reference
plan to be given to the low-level controller, the augmented
MAGHP. Hence, we require realistic network delay state
observations from some underlying probability distribution
that describes the delay at each airport within the network.
Two factors complicate this task: the marginal delay distribu-
tions at each airport may differ, and there could be a variety
of dependencies between the delays at different airports.
The former encapsulates the fact that different airports have
significantly different operating characteristics (e.g., runway
capacity, airspace structure, typical weather patterns), whereas
the latter is the result of the networked nature of the system
(e.g., tail-propagated delays, shared airspace constraints, traf-
fic management initiatives).

To overcome both of these complicating factors, we
use a statistical construct called a copula. A copula re-
parameterizes multivariate probability distributions, separat-
ing the tasks of estimating marginal distributions and estimat-
ing dependence structures [23]. Formally, an N -dimensional
copula C : [0; 1]N → [0; 1] is any valid cumulative distribu-
tion function C(u) = C (u1; : : : ; uN ) with standard uniform

random variables as its marginal distributions. The depen-
dence between marginal distributions is completely captured
by the functional form of C, whereas individual marginal dis-
tributions are represented by standard univariates u1; : : : uN ,
after they are estimated and transformed via a probability
integral transform. The advantage of using a copula lies in
the fact that any continuous multivariate distribution can be
uniquely represented by a copula. This fact is made precise
by the following theorem:

Theorem 1 (Sklar’s Theorem [24]). Consider a N -
dimensional cumulative distribution function FX with
marginals FX1 ; : : : ; FXN

. Then, there exists a copula C such
that FX(x1; : : : ; xN ) = C (FX1(x1); : : : ; FXN

(xN )) for all
xi ∈ R and i = 1; : : : ; N . Furthermore, if FXi

is continuous
for all i = 1; : : : ; N , then the copula C is unique.

We can now estimate individual marginal airport delay dis-
tributions from data, and subsequently compute the copula
C with a maximum likelihood estimator [25]. Finally, we
note that a copula contains no temporal information, whereas
airport delay distributions can be highly non-stationary [26].
While there are refinements such as time-varying copula
processes [27], we capture the time-varying airport delay
dynamics using 24 different copula models corresponding to
each hour of the day.

Along with the copula-based approach for approximating
NAS delay states, we use an approximate projection-based
network control framework to construct the reference plan to
be given to the low-level controller. In this paper, due to space
limitations, we will only give an overview of this construction;
for technical details, we refer the readers to [25]. To begin,
we denote by x(t) ∈ RN

�0 the vector of airport delays at time
t. There are unknown system dynamics through which the
airport delays evolve from time t to t+1. These dynamics are
highly complex and unknown, necessitating the approximate
and low-dimensional characteristics of this high-level planner.

Suppose we observe x(t) and now would like to construct a
reference plan for how airport delays should evolve at a high-
level. Recall that the low-level controller (i.e., augmented
MAGHP) is responsible for ensuring that a feasible schedule
is produced; hence, instead of planning individual flights, we
project x(t) to a two-dimensional subspace of performance
metrics, parameterized by the total delay and the total vari-
ation (TV) of the delays. Intuitively, the former measures
the magnitude of delays, whereas the latter measures the
spatial variance [6]. We can now set performance targets in
the performance metrics subspace and construct a reference
plan from candidate states within the approximate NAS delay
distribution copula model.

Finally, we note that there may be multiple candidate states
which satisfy our performance target. To select an optimal
candidate state, we formulate the Conservative Selective Re-
distribution Problem (CSRP) in (1), an essential component
of the high-level planner block in Fig. 1. In the CSRP
formulation (1), bX ⊂ Rn denotes the copula-generated space
of NAS delay states from which we find an optimal candidate
x

(t)
?

�
= x(t) that minimizes a three-term objective, subject to
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Figure 1: Representation of our hierarchical control framework.

a delay conservation constraint. We denote by � ∈ [0; 1]
the redistribution workload parameter; c a N × 1 vector
whose entry ci = 0 for non-targeted airports, and ci = 1

for targeted airports;
n
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airport delays; � > 0 a small tolerance factor, and 1N the
N × 1 vector where each entry is 1. The norms are standard
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The first term in the objective assesses a base penalty

that enforces smooth transitions (i.e., delays are not “discon-
tinuous”) from the previous optimal candidate x

(t�1)
? . The

second term elucidates why we refer to � as a redistribution
workload parameter: It interpolates between adherence to the
baseline MAGHP solution (given by the second term) versus
redistributing delays away from target airports (given by the
third term). Note that since � ∈ [0; 1], we must ensure that
the second and third term are of comparable scales, so we
introduce the normalizing constant 1>N c=N . This constant
accounts for the fact that the third term is only evaluated
over certain airports, whereas the second term is evaluated
over every airport. Finally, the delay conservation constraint
requires that all optimal state candidates have total delays that
lie within a small �-band of baseline MAGHP solution. For
the case study results in Section V, we pick a �-tolerance such
that the CSRP remains feasible (i.e., there is a non-empty set
of candidate states) while ensuring that the delay conservation
constraints are enforced in practice.

B. Low-level controller

We consider an adapted version of the MAGHP. The
mathematical notations used in the formulation are shown
below.

A : set of all airports, indexed by i
F : set of all flights, indexed by f
T : set of all time periods, indexed by t
Fdep : set of flights that depart in design day

but arrive the next day
Farr : set of flights that depart before the

design day but arrive in design day
Ffull : set of flights where we model the

departure and arrival
Fd : set of flights where we model the

departure
Fa : set of flights where we model the arrival
destf : destination of flight f
origf : origin of flight f
df : scheduled departure time of flight f
rf : scheduled arrival time of flight f
Tdep : feasible departure times for flight f
Tarr : feasible arrival times for flight f
D(i; t) : departure capacity at airport i at time t
A(i; t) : arrival capacity at airport i at time t
vft : 1 if flight f departs at time t, 0 otherwise
wft : 1 if flight f arrives at time t, 0 otherwise

We have a set of flights F with scheduled and feasible
departure or arrival times in T into airports A. There are three
main overlapping sets of flights that we use. Fd = Fdep∪Ffull

contains all flights where we model the departure. Likewise,
Fa = Farr ∪ Ffull contains all flights where we model the
arrival. Ffull contains flights that depart and arrive within T .
Since demand exceeds airport capacity, we need to assign
revised departure and arrival times to each flight, which
are modeled with binary decision variables vft and wft,
respectively. The following constraints must be satisfied:


