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Air Traffic Management by Stochastic Optimization
Sofiane Oussedik1 and Daniel Delahaye2 and Marc Schoenauer3

Abstract—The annual number of flights in Western Europe has increased
from about 2.6 million in 1982 to about 4.5 million in 1992, an increase of
about 73%. Acute congestion of the Air Traffic Control system has been
the result. A similar problem exists in United States, where each of thirty-
three major airports has experienced about 20,000 hours of annual delays
in 1997.

Two kinds of congestion can be identified according to the part of
airspace involved : Terminal congestion (around airports) and En-route
congestion (between airports). In the past, the first way to reduce these
congestions was to modify the structure of the airspace in order to increase
the capacity (increasing the number of runways, increasing the number of
sectors by reducing their size). This method has a limit due to the cost in-
volved by new runways and the way to manage traffic in too small sectors
(a controller needs a minimum amount of airspace to be able to solve con-
flicts).

The other way to reduce congestion is to modify the flight plans in order
to adapt the demand to the available capacity. To reach this goal, ground
delay programs are often applied on aircraft which are expected to undergo
congestion. Ground delays are safer (fewer aircraft waiting in the sky) and
cheaper (according to the fuel consumption). When Integer Linear Pro-
gramming (ILP) is applied to the general Ground Holding Problem, it can
be shown that large delays are given to some aircraft in order to match the
sector capacities.

So, to reduce congestion in sectors and avoid large delays, demand has
to be spread in spatial dimension too (route-slot allocation). Our research
addresses the general time-route assignment problem :

“ One considers a sectorized airspace and a fleet of aircraft with
their associated route and slot of departure. For each flight a
set of alternative routes and a set of possible slots of departure
are defined. One must find “optimal” route and slot allocation
for each aircraft in order to significantly reduce the peaks of
congestion in sectors and airports, during one day of traffic.”

A state of the art of the existing methods (including ILP) shows that
this general bi-allocation problem is usually partially treated and the whole
problem remains unsolved due to the complexity induced by this new spa-
tial dimension of the state domain. Stochastic Optimization is then adapted
to the problem. The strong point of this technique is its ability to investigate
any kind of objective function without any regularities such as derivabil-
ity and linearity. A sector congestion measure has been developed which
gather the major control workload indicators. This measure is then com-
puted for each proposed planning by refeering to an off-line simulation.
New problem-based stochastic operators have been developed and success-
fully applied on real instances of the problem.

Keywords—Air Traffic Management, Stochastic Optimization, Air Traf-
fic Control, Congestion.

I. I NTRODUCTION

As any human being, a controller has working limits, and
when the number of aircraft increases, some parts of the airspace
reach this limit and become congested. In the past, the first way
to reduce these congestions was to modify the structure of the
airspace in order to increases the capacity (increasing the num-
ber of runways, increasing the number of sectors by reducing
their size). This has a limit due to the cost involved by new
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runways and the way to manage traffic in too small sectors (a
controller needs a minimum amount of airspace to be able to
solve conflicts). The other way to reduce congestion is to mod-
ify the flight plans in order to adapt the demand to the available
capacity. Then congestion is expected to be reduced by moving
(in a limited domain) the time of departure of aircraft (in the past
and in the future) and by changing the current flight paths (with
small extradistance).

Actually, the policy uses a computerized procedure based on
a First Come First Served rule in order to allocate appropriate
ground holds to the aircrafts without using any global optimiza-
tion strategy. In this methodology the priority is given to flights
that have earlier estimated entry times to regulated sectors (a
sector is regulated if the anticipated demand excedds its capac-
ity during a time period) and also assigns some of the available
capacity to the late filled flight plans to avoid large delays.

Given the severity of the congestion problem, the examina-
tion of models for route - slot allocation rather than the slot-
allocation only becomes apparent.

This paper shows how well stochastic optimization is able to
manage this kind of problem. In the second part, a short descrip-
tion of the previous related works is given. In the third part, a
simplified model is developed and a mathematical formulation
of our problem is given. In the fourth and fifth part a descrip-
tion of Genetic Algorithms and their adaptation to Air Traffic
Management (ATM) is given. Finally, the sixth part gives some
results on the application of those algorithms on a real day of
traffic.

II. PREVIOUS RELATED WORKS

In the last decade, several traffic assignment techniques [6]
have been developed in order to reduce congestion in trans-
portation networks by spreading the traffic demand in time and
in space. Dafermos and Sparrow [10] coined the termsuser-
optimizedandsystem-optimizedtransportation networks to dis-
tinguish between two distinct situations in which users act uni-
laterally, in their own self-interest, in selecting their routes, and
in which users select routes according to what is optimal from
the societal point of view, in that the total costs in the system
are minimized. Classical approaches are applied to static traffic
demand and are mainly used to optimize traffic on a long time
period and can only capture the macroscopic events.

When a more precise matching between traffic demand and
capacity has to be found, microscopic events have to be taken
into account, and dynamic traffic assignment techniques have to
be used, ([18] gives a good description of those techniques). The
main ones are the following : Space-time network [22], Varia-
tional Inequality [12], Optimal Control [13], Simulation [7] and
Dynamic Programming [17], [20], [5].

One of the most popular and used models are the Integer Lin-
ear Programming (ILP) ones [17], [15], [4] which were applied
to several versions of the problem. At the beginning, ILP was
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applied to the single airport problem [2] and to the multi-airport
Problem [21]. The main difference between the two problems
is the delays propagation as the aircrafts can perform multiple
flights. After that the airspace capacity (between airports) was
introduced as the Air Traffic Flow Management Problem [4],
[20] , and at a final step the Air Traffic Flow Management
Rerouting Problem [4].

A. ILP and Air Traffic Management

The key of solving Large Scale Integer Programming prob-
lems is the obtention of strong formulations, which include
facets of the convex hull of the problem. It is also important
to choose well adapted Linear Programming relaxations which
permits a fast resolution (using the simplex algorithm) of the LP
and the obtention of a large number of integral variables. Gener-
ally Branch and Bound is used to take part on generating integral
solutions from the solutions given by the relaxed ILP.

A weak point in ILP for ATM is the dimentionality of the for-
mulations that limit the number of constraints that can be han-
dled (linear constraints) and the number of variables that can be
taken into account.

The variables usually used in ILP for the TFM problem [4],
[21], [19] describes the assignment of a flight to a slot by using
0-1 Integer Progamming formulations. In those formulations,
Xt
f describes the affectation of the flightf to the departure slot

t.
Let us define the different used variables and constraints :
Let |F | be the cardinality of the flights set ;
Tp : the number of time periods ;
S : the total number of sectors ;
Scf : the Maximum number of sectors that the flightf will

cross during its flight ;
Sf : the maximum cardinality of the flight feasible slots set.
andTf : the set of feasible slots for the flightf .
The number of variables in such formulations is equal to∑
f

∑
t∈Sf
|Tf | so that each flight have a different departure

slot interval. An upper bound of this number is :|F | × Sf
The number of constraints is :S×Tp+2×(

∑
f

∑
t∈Sf

|Tf |).
An upper bound is given by :S × Tp + 2× |F |.

In order to have a more precise description, let us take the
example given by the french airspace :
• Number of sectorsS = 100.
• Number of flights : 6000 flights.
• Tp = 288, representing 24 hours by 5 minutes intervals.
• Sf = 18, representing 30 minutes in the past and one hour

in the future of possible slot delays if we decide that a slot
delay has a 5 minutes unit.

The number of variables will be108000 and the number of
constraints40800.

Taking the time intevalTp = 2 min increases the formulation
size to270000 variables and84000 constraints.

All the literature presented models can carry with more or less
efficiency (depending on the strength of the formulation) some
refinements as managing the speed (limited entry delays on each
sector) of each aircraft and the flights connexions. However,
these refinements adds more variables and constraints.

The objective function of the ILP formulations represents the
cost of the flight plans in term of ground delays, airborne delays
if any, fuel consumption , ... etc.

To apply ILP to route-slot allocation, the routes can be easily
added by changing the variables so that each variable discribes
the bi-allocation of a route and a slot to each flight. The model
becomes then greater by at most a factorNR,NR representing
the maximum number of alternative routes that a flight can use.

For instance, taking into account four alternative routes for
each flight will lead us to a formulation containing4 × 108000
variables.

Therefore, ILP can’t actually handle the general route-slot al-
location problem if there is several routes for a great number of
flights.

B. Conclusion

All the previous approaches including ILP are not able to
manage the whole bi-allocation problem due to its complexity.

A first attempt of resolution of the whole problem can be
found in [11]. This paper present a flow modeling of the air traf-
fic network and give a resolution principle of the route-time bi-
allocation problem based on stochastic optimization with very
good results. The present approach is the following of this work.
The major difference between these two approches relies on the
air network modeling.

In the following, a model is proposed and a method is devel-
oped that yield “very good” solutions for realistic instances of
the whole problem.

In this model, which is more realistic for air traffic, the con-
cept of route flow is no more valid and this induce a stronger
complexity.

III. A S IMPLIFIED MODEL

A. Introduction

Congestion in the airspace is due to aircraft which have close
positions in a four-dimensional space (one time dimension and
three space dimensions). It is then relevant to investigate ways to
separate those aircraft in this four-dimensional space by chang-
ing their slot of departure (time separation) or by changing their
route (spatial separation) or both. Those changes must be done
in a way that takes into account the objectives of the airlines :
• the moving of the slot of departure must be done in a limited

domain ;
• the possible routes must not generate too large additional

distances.
So, for each flight, a new pair (slot of departure, route) will be
chosen from two discrete and finite sets :
• a set of possible slots of departure (around the original slot

of departure) ;
• a set of routes which do not increase the total path length

too much and are approved by the airline company the
flight belongs to.

According to the controllers themselves, the workload in-
duced in a control sector is a function of the three main fol-
lowing criteria :
• the conflict workload that results from the different actions

of the controller to solve conflicts.
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• the coordination workload corresponds to the information
exchanges between a controller and the controller in charge
of the bordering sector or between a controller and the pi-
lots when an aircraft crosses a sector boundary;

• the monitoring aims at checking the different trajectories of
the aircraft in a sector and induces a workload.

We can now define our goals more precisely in the following
way :

one considers a fleet of aircraft with their associated
route and slot of departure. For each flight a set of al-
ternative routes and a set of possible slots of departure
are defined. One must find “optimal” route and slot
allocation for each aircraft in a way that significantly
reduces the peak of workload in the most congested
sectors and in the most congested airports, during one
day of traffic.

The workload computing is based on the aircraft trajectories
discretization (time stepdt) produced by an off-line simulation
using the CATS [1] simulator. The workload indicator used is
the summation of the coordination and monitoring workloads
regarding to critical capacities of the controller’s workload. The
conflict workload has been omited in order to match the opera-
tional capacity ; Moreover its computation needs aO(n2) com-
parison of the aircrafts positions which leads to a huge compu-
tation time.

B. Mathematical formulation

A pair of decision variable(δi, ri) is associated with each
flight in which δi is the advance or the delay from the origi-
nal slot of departure andri is the new route. With this notation,
(0, r0) will be considered as the most preferred choice from the
user point of view. Those two decision variables (δi,ri) will be
chosen from two finite-discrete sets :∆ for the slots andR for
the routes.

As it has been previously said, workload in a sectorSk at time
t can be expressed by the summation of two terms :

W t
Sk

= ω ×WmoSk
(t) + ψ ×WcoSk

(t) ;

WhereWmoSk
(t) is the monitoring workload (quadratic term

related to the number of aircraft overloading a sector monitor-
ing critical capacityCm), WcoSk

(t) the coordination workload
(quadratic term of the number of aircraft overloading a critical
coordination capacityCc).

Whereω ∈ [0, 1] andψ ∈ [0, 1] gives more or less importance
to the two congestion indicators.

The quadratic terms express the fact that the controller work-
load intensity grows approximately as the square of traffic den-
sity.

The congestion (in term of overload) is numerically estimated
by :

WmoSk
(t) =

{
(1 +Mt

Sk
− β × Ct

mSk
)2 − 1 if Mt

Sk
> β × Ct

mSk

0 else

β ∈ [0.8, 1] : Trade over the monitoring capacity (constraints
tuning)

WcoSk
(t) =

{
(1 + Ct

SK
− Ct

cSk
)2 − 1 if Ct

Sk
> Ct

cSk

0 else

As there are some uncertainties on the aircraft position, control
workload has been smoothed in order to improve the robustness
of the produced solution. This smoothing is done by averaging
the control workload over a time window :

W̃ t
Sk

=
1

2.D + 1

x=t+D∑
x=t−D

W x
Sk

where :
W̃ t
Sk

represent the sectorSk smoothed workload duringt and
D is the length of the smoothing window.

Formulation of the objective function
The objective is defined in the following way : “ one must try

to reduce congestion in the most overloaded sectors” ; this will
spread the congestion over several sectors. So, we have :

obj = min
k=P∑
k=1

(
(
∑
t∈T

W̃ t
Sk

)φ × (max
t∈T

W̃ t
Sk

)ϕ
)

where :
•
∑
t∈T W̃

t
Sk

: is the congestion surface computed during
the day for the sectorSk.

• maxt∈T W̃ t
Sk

: is the maximum congestion reported during
the day for the sectorSk.

• P is the number of elementary sectors.
The parametersφ ∈ [0, 1] et ϕ ∈ [0, 1] gives more or less

importance to congestionmaximum or to congestionsurface.

C. Problem complexity

Before investigating an optimization method, the associated
complexity of our problem must be studied. The model pre-
viously developed is discrete and induces a high combinatoric
search space. As a mater of fact, ifRn,∆n are the route set
and the slot moving set associated with flightn, the number of
points in the state domain is given by :

|State| =
n=N∏
n=1

(|Rn|.|∆n|)

where|S| denotes the cardinality of the setS.
For instance, for 10000 flights with 10 route choices and 10

possible slot movings :|State| = 10010000. Moreover, those
decision variables are not independent due to the connection
induced by the control workload and the airport congestions ;
so, decomposition methods cannot be applied. It must be no-
ticed that the objective function is not continuous (then it is not
convex) and may have several equivalent optima. This prob-
lem has been proved to be a strong NPhard[3] problem with
non-separable state variables which can be well addressed by
stochastic optimization.

The most popular stochastic optimization methods are the
Simulated Annealing algorithm and the Genetic algorithms. In
the following we will present and apply the Genetic Algorithms
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to the ATM problem with the objective of decreasing the Air
Traffic Congestion. The GAs which uses a population of solu-
tions are expected to give several solutions to this multimodal
problem.

IV. GENETIC ALGORITHMS

Genetic Algorithms (GAs) are probabilistic search algo-
rithms. Given an optimization problem they try to find an op-
timal solution. GAs start by initializing a set (population) con-
taining a selection of encoded points of the search space (indi-
viduals). By decoding the individual and determining its cost,
the fitness of an individual can be determined, which is used to
distinguish between better and worse individuals. A GA iter-
atively tries to improve the average fitness of a population by
construction of new populations. A new population consists of
individuals (children) constructed from the old population (par-
ents) by the use of re-combination operators. Better (above av-
erage) individuals have higher probability to be selected for re-
combination than other individuals (survival of the fittest). After
some criterion is met, the algorithm returns the best individuals
of the population.

A theorical foundation of GA and their convergence to an op-
timal solution can be found in [14], [9]. In contrast to the theor-
ical foundations, GAs have to deal with limited population sizes
and a limited number of generations. This limitation can lead
to premature convergence, which means that the algorithm gets
stuck at local optima. A lot of research has been undertaken
to overcome premature convergence (for an overview see [16]).
Also, experiments have shown that incorporation of problem
specific knowledge generally improve GAs. In this paper, atten-
tion will be paid on how specific ATM information have been
incorporated in GAs.

V. A PPLICATION TO A IRSPACECONGESTION

A. Introduction

A set of flight plans is generated from each chromosome can-
didate and the whole associated day of traffic is generated. Sec-
tor congestion are registered and the associated fitness is com-
puted. The problem specific features of the Genetic Algorithm
are now described.

B. Data Coding and biased initial population

This step consists of converting each point of the state do-
main into a chromosome used by the genetic algorithm. In our
problem, the state variables (which contain all the information
needed to compute the sector workload) consist of the set of
flight plans. The possible new path and new slot moving have
been supposed to be chosen in two discrete-finite sets associated
with each flight. In this case a straight forward coding has been
used in the sense that each chromosome is built as a matrix (see
fig. 1–(a)) which gather the new slot moving (for the time of de-
parture) and the new route number (for the flight path). With this
coding, a population of individuals can be created by choosing a
new slot moving number and a new route number from individ-
ual sets associated with each flight with a positive probability to
move the flights which are involved in the congestion peaks (to
each flight we associate the reported congestion during the flight

Rn

r1
3

rn
k rN

6

1∆ ∆n

1δ2
δn

j δN
3

RnR1 RN

∆N

r
1

r r
n N

T NT n1T

W W W

Stochastic
Trend

Congestion
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(a) The chromosome structure

In Out In

Time

Out2211
Advance Delay

Sector congestion

(b) The stochastic trend

Fig. 1. Special coding and stochastic problem specific knowledge

and the stochastic trend, these two indicators are explained be-
low - see also, fig. 1–(a) and (b)) and a smaller probability for
the others.

C. Fitness Evaluation

To apply the selection operator, a fitness must be associated
with each chromosome in order to evaluate the quality of each
individual according to the optimization criterion. In our prob-
lem, the fitness is defined by the ratio of the congestion associ-
ated with the initial distribution of the flight plans (ref ) and the
distribution given by the chromosome (chrom) :

fitness(chrom) =
W (ref)

W (chrom)
where :

W (X) =
k=P∑
k=1

(
(
∑
t∈T

W̃ t
Sk,X

)φ × (max
t∈T

W̃ t
Sk,X

)ϕ
)

So, whenfitness(chrom) > 1, it means that the induced
congestion is lower than the reference one.

D. Recombination Operators

To be able to recognize the aircraft involved in the biggest
sector congestion, new information must be added to the chro-
mosome which indicates for each gene, the maximum level of
sector congestion encountered during a flight.
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Rn

∆n

MUTATION

n

(a) The mutation

Crossover

Selected flight planning 1 Selected flight planning 2

New flight planning 2New flight planning 1

(b) The crossover

Fig. 2. Stochastic Operators

Crossover
The successive steps of this crossover operator are the follow-

ing :

• two parents are first selected according to their fitness ;
• the summation of the sector congestion levels is computed

for each flight in both parents. For a flightn, total conges-
tion level in the parentp will be notedW p

n ;
• an order relationship is then built with the total congestion

level in the following way :
– flight planingn in parent 1 is said to be “much better” than

flight planingn in parent 2 ifW 1
n < δ.W 2

n ; whereδ ∈
[0.7, 0.95];

– flight planingn in parent 2 is said to be “much better”
than flight planingn in parent 1 ifW 2

n < δ.W 1
n ;

– flight planingn in parent 1 and in parent 2 are said to be
“equivalent” if none of the previous relations matches;

• if a flight planning “is much better” in the first parent than
in the second then it is copied in the second ;

• if a flight planning “is much better” in the second parent
than in the first then it is copied in the first ;

• if the two flight plannings “are equivalent” they are ran-
domly exchanged with a constant probability (0.5) ;

Mutation
As already noted, this operator only affect the flights involved

in the highest peaks of congestion, and also determine weather
it is “more suitable” to delay or advance a flight (see fig.1–(b)).
So to compute thestochastic trendover all the sectors, we com-

Fig. 3. The French Airspace

pute the signed indicatorTn ∈ [−1, 1] which is a sort of bias
to advance or delay each flight.Tn is a signed pondered (by
the encountered flight congestion) summation over sectors. The
sign indicates the sector state during the entree and the exit of
the flight (congestion increase or decrease).

The mutation operator works in the following way :
• a threshold congestion level is randomly chosen ;
• then for each flightn in the chromosome the following are

applied :
• if (WSn > ThS) then the associated flight plan is modi-

fied :
– if Ti > rand(1) then we randomly assign a futur slot

to the flight and a random alternative route with a small
probability (as instance0.1).

– if Ti < −rand(1) then we randomly assign a past slot
to the flight and a random alternative route with a small
probability (as instance0.1).

– otherwise we randomly affect the flight slot with no pref-
erence for the advance or the delay with a small probabil-
ity (as instance0.2) and we randomly choose a new al-
ternative route with a greater probabilty (as instance0.4)
to avoid the congested areas the flight passes through.

• else the flight planing is unchanged.
After the processed mutation and in order to decrease the

ground holds, some flights are given a null ground hold with
a small probability (0.05).
rand(x) represent a random float between the [0, x] range.

VI. RESULTS ON A DAY OF TRAFFIC

A. Introduction

To test the abilities of the presented stochastic optimization
model, we have performed a set of experiments based on a
whole day traffic data which corresponds to 5820 flights that
cross the french airspace (figure 3) on the1th of September
1996. The number of elementary sectors was 89, the number of
sectors (half an hour) flights entrance capacity constraints (en-
route constraints) was more than 2500 constraints.

We consider that the congestion of an elementary sectorSk



6

at time periodt is equal to the congestion of the sectors group-
ing RSK to whom it belongs (̃W t

Sk
= W̃ t

RSk
) during the same

period. By this, we take into acount the changes in the critical
capacities values during the day.

At a time periodt, if an elementary sector is not concerned
by an en-route constraint, it is allocated an unlimited capacity.
The missed capacities during the overload evaluation was about
13% of the total neededdt capacities.

Capacities
The en-route constraints expresses the number of flights that

can enter a grouping sector during a half an hour time period.
However to make a fiable planning (so that the flights are spread
over the half an hour sector entering constraint) we need to ex-
press this capacity in term of the number of flights that can be at
the same timedt (dt = 1 or 2 minutes to at most5 minutes by
regard to the sectors crossing times) on a given sector grouping.
This number is dependant on the topology of the sector and also
on the human abilities to manage the traffic.

Given the en-route capacity which corresponds to the num-
ber of flights that can enter the sectorS during a half an hour
(T = 30 minutes)CTS , andtfS the average estimated time that
the flights will spend on the sector S, we can deduce the “in-

stantaneous” (thedt capacity)cS (cS = ( tfS

T ) × CTS) of each
sectorS. After some simulations on the reference planning, we
obtained an average trade off between the half an hour sector ca-
pacity and the “instantaneous”dt sector capacity equal to0.32.
We used this average trade off to initialize all the trade off ca-
pacities. So, a sector that is not crossed by any flight during
the pre-processing simulation (we dont have an average cross-
ing time) and that have some sector capacities constraints will
have this0.32 trade off to compute the number of allowed mon-
itoring aircrafts in the sector at any time.

Alternative routes
The alternative routes were determined by preprocessing

computations. We taked more than a week of flight plans (from
01/09/1996 toward 08/09/1998) and filtered for each origine
destination the different possible routes on the french airspace.
The flights were then simulated for all the alternative routes.

The alternative routes (even if they take-off or/and land out-
side of France) were filtered regarding to origine (departure air-
port) and destination (arrival airport) and not only by regard to
the first and last beacon on the french airspace. This airport fil-
tering adds more flexibility on the congestion space (balacing
traffic streams) spreading.

The presented tests were performed with the elitism principle
(maintaining the best solution on the population at each Genetic
Algorithm iteration) and have been processed on a Pc Pentium
300Mhz.

B. Parameters

The tests parameters for the computations were :
For the flights planning (Different Tests) – see table I:

where :
- restricted gives the set of flights for which we can change

the flight plans (french airports departure flights only);

Planning restricted routes Coo Mo trend SP dt MSM

Fixed C all all 2 8 15 4 2 60

French french all 2 G 15 4 2 45

Standard all standard 2 G 15 4 2 45

All routes all all 2 G 15 4 2 45

Direct all direct 2 G 15 4 2 45

TaskI, MC all all 2 G 15 4 2 45

All (60 min) all all 2 G 15 4 2 60

All (90 min) all all 2 G 15 4 2 90

TABLE I

DIFFERENT COMPUTATIONS PARAMETERS

- routes gives the available routes (direct, standard (original
flight plan), all alternative routes);

- Coo is the Coordination overload limit ;
- Mo is the monitoring one ; G denotes the ATC “real” ca-

pacities.
- trend is the stochastic trend time window in minutes ;
- SP is the smoothing period ;SP in the future and in the

past in minutes.
- dt is the time step in minutes;
- MSM is the maximum allowed slot moving.
- andφ is set for all the tests equal to0.9 andϕ = 0.1 to give

more importance to the decrease of the maximum congestion
peaks.

For the genetic Algorithm Initialization :
- The population length :50 ;
- The number of generations :100 ;
- Probability of crossover :0.2 ;
- Probability of mutation :0.6 ;
- by regard to the used quadratic function we applied a Sigma

truncation scaling of the fitness function when selecting the mu-
tation and crossover candidate planning.

The overloads decrease results of two elementary sectors, LF-
BDC1 and LFRRUE are presented, which represents the over-
load before and after the GA optimization.

We had also implemented two mutation deterministic strate-
gies to improve the matching of the sector capacities that are
the Task Interval technique [8], [15] and a procedure which per-
mits the decongestion of the most congested (overloaded) sector,
these improvments are used on the test (TaskI, MC). While set-
ting the same parameters as theallroutes test, we used (with
a 0.3 probability when the mutation is selected) the Task Inter-
val deterministic heuristic on1000 iterations to match the half
an hour constraints and also with the same probability the MC
improvment presented here below.

C. Short review of the Task Interval - TaskI -

The task interval is a technique that addes at each iteration a
small time step (as instance 1 minute) ground hold to one se-
lected flight. We begin first by detecting the overloaded con-
straints and then computing for all the flights entering these con-
straints a cumulative mark that is used to sort the flights from the
one that passes through the greater number of congested con-
straints and that have the smaller amount of time to let the flight
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being exited from each constraint, to the one that have the small-
est mark. The first sorted flight is then added a ground delay
time step. Before the next iteration, the overloaded constraints
and flights marks are updated.

D. Satisfy a constraint - MC -

This deterministic improvment adds the minimal slot moving
increment to the flights that passes over the most overloaded
half an hour constraint to remove the overload. The flights that
passes on the constraint are sorted according to a priority rule.
The first flight is the one which has the minimum adding ground
holding time to be get out from the overloaded constraint. Then
we iteratively apply the procedure on the sorted flights until the
constraint became non-congested.

Notice :
The last two deterministic proceduresTaskI and MC don’t

guarantee that the ground hold delays of the flights still under
the introduced GA maximum slot moving. Also, they only work
on satisfying the half an hour constraints.

E. Results on a Real Day of Traffic (RDT) with user fixed ele-
mentary en-route capacities -FixedC test

The figure 4 presents the evolution of the best and average
solution at each iteration of the algorithm. The best congestion
performs (in the sens of the defined square criterion) a decrease
by a factor15.10 of the initial reference congestion.

The figure 5–(a) presents the congestion decrease in the LF-
BDC1 sector.

In the table I, we can notice that the monitoring capacity (8
flights per sector during 2 minutes) was satisfied and that the av-
erage number of flights that overloads a coordination constraint
was1.47 flights.

The figure 4–(b) shows that the first steps of the optimization
were very fast. the algorithm reaches an acceptable solution on
less than 40 iterations.

F. RDT with real world sector grouping capacities

Here, the monitoring capacities are determined as explained
above, by refeering to real provided half an hour or even hourly
capacities.

Trend effect
The figure 6–(a) presents the effect of the stochastic trend.

The computation was made by taking the sameallroutes pa-
rameters and by chosing to use the trend on the first test and
to remove it on the second one (without using the maximum
encountered congestion for each flight). We noticed a good im-
provment of the best planning quality during the approximately
35 first iterations, then the two tests performs the same results
in term of quality of the best provided planning.

Maximum slot moving effect
The figure 6–(b) presents the effect of adding more flexibility

on the slot moving by setting the maximum slot moving at 45,
60, 90 minutes in the past and in the future. So adding freedom
on the slots moving increases the quality of the best planning.
However, the table II shows the “price” in term of ground delays
that was generated by the improvments.
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Fig. 4. Evolution of the population best and fitness average

The sectors crossing time
The figure 7 shows the optimization effects on the sectors

maximum and average crossing times. The boxes express the
times before optimization and the dash shows the ones after op-
timization. It appears clearly that the maximum sectors crossing
times have decreased. This phenomenon is due to the rerout-
ing effect of the flights that spend too much time on congested
sectors and also on the routes choice diversity including direct
routes and other feasible alternative routes. However the aver-
age time on sectors still approximately the same. The figure 8
presents the congestion decrease in the LFRRUE sector. We no-
tice also, that, the best fitness in the case of the presented user
defined capacities (15.10) 4–(b) is greater than the best fitness
(5.49) 6–(b) using the “real capacities”. The figure 9–(a) and
(b) shows that moving the flights in the four dimentional space
by restricting those moves only to the french departure flights
gives bad results by regard to the other scenarios. So, a global
(International or at least European) resolution of the problem is
much more suitable.

The table II presents some processed computations :
- NBGH : is the number of flights that have a Ground hold

delays;
- GHS : sum of ground hold delays ;
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Fig. 5. LFBDC1 - Reducing Congestion

Param NBGH GHS DR SR OR

Fixed C 2480 83334 2075 2019 1726

French 1303 33670 922 4316 582

Standard 3283 87904 0 5820 0

All routes 3135 81368 2149 2018 1653

Direct 3203 83878 5820 0 0

TaskI, MC 2425 64515 2190 1967 1663

All (60 min) 3125 107072 2170 1975 1675

All (90 min) 3204 162998 2162 1963 1695

Param Best Average OmC NfO

Fixed C 15.10 7.84 0 1.47

French 1.40 1.37 0.43 2.84

Standard 3.57 2.73 0.46 2.62

All routes 5.49 3.77 0.45 2.03

Direct 3.60 2.72 0.43 2.52

TaskI, MC 5.45 3.25 0.46 2.01

All (60 min) 5.9 4.11 0.46 1.96

All (90 min) 6.20 4.44 0.46 1.87

TABLE II

DIFFERENT COMPUTATIONS
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Fig. 6. Trend effect and Maximum slot moving effect

- DR : Number of Direct routes ;
- SR : Number of Standard routes ;
- OR : Other routes ;
- Best : Best fitness ;
- Average : Average fitness ;
- OmC : Percentage of overloaded dt monitoring constraints;
- andNfO : Average number of flights that overloads the

congesteddt constraints (Monitoring and Coordination con-
straints).

After the end of the resolution, we simulate again the flights
(only one simulation which cannot guarantee the robustness of
the above results) with the new routes and ground holds, The
number of simulated conflicts (with a horizontal norm of5 Nm
and a vertical norm of2000 ft) occuring during the day de-
creases from2616 conflicts to2317. A decrease of about 11.4
%, also the flight probability to undergo a conflict regarding to
the total flight times encountered during the day decreases from
0.550 to 0.487.

G. With TaskI and MC

The figure 10 shows the evolution of the best planning during
the iterations of the GA. Adding the two deterministic improv-
ments increased the convergence speed of the algorithm. This,
shows the efficacy of the Stochastic operators (Stochastic Trend
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Fig. 7. The effects on the Sectors Crossing Times
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Fig. 9. Evolution of the population best with multiple scenarios

and Encountered Flight Congestions) in solving the problem by
generating a kind of fuzzy decision variables domain decompo-
sition.

H. Conclusion

Even with the small population size used, the results given by
the genetic algorithm are very encouraging.

The computation times (4 to 6 hours for 100 iterations de-
pending on the parameters choice) are the weak point of this
GAs based method, but when using GAs as pre-tactial method
taking place during the two days preceeding the day of opera-
tions, the computations can be done on night. Also, a parallel
GA will be helpfull to decrease the processing times.

VII. C ONCLUSION

Our objectif was the reduction of the Air Traffic Congestion
by reaching a system equilibrium. To that end, Genetic Algo-
rithms have been used and new re-combinators have been pre-
sented and shows that the use of Air Traffic specific knowledge
improves the results of the GA.

Also, the strength of this model is its ability to manage the
constraints of the airlines companies in a microscopic way by
using individual sets of decision variables associated with each
flight and can take into acount the flights connexions.
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Fig. 10. Adding the Two Deterministic Improvments

The next steps of our research are :
• The introduction of new alternative routes taking into ac-

count the sectors differences, to go higher on the figure 9
curves and to decrease the ground hold delays.

• The introduction of new stochastic operators including
more ATM specific knowledge.

• The hybridation of the GA with other heuristic and deter-
ministic methods. An hybrid stochastic method managing
the whole complexity of the route-slot allocation problem
with a strong linear programming formulation managing
the slot allocation case can probably lead to very good re-
sults.

• Developing a sector complexity indicator more efficient
then the only monitoring and coordination ones, by taking
into acount the sectors microscopic events as the aircrafts
separation.

• Making more comparisons and statistical evaluation of the
results.

• And, more delays (ground and airborne delays) optimiza-
tion (actually the delays are not optimized, however a
planning with less amount of delay is prefered during the
stochastic selection to a planning with too much delays.

We also notice a need to have more sector capacities data, not
only hourly or half an hour capacities but 5 minutes, 2 minutes
or instantaneous capacities, and more capacities related to non-
regulated sectors. Such capacities must be provided after some
studies on the controllers human abilities and the tools they use
to manage the traffic.
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