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Abstract—The annual number of flights in Western Europe hasincreased runways and the way to manage traffic in too small sectors (a
from about 2.6 million in 1982 to about 4.5 million in 1992, an increase of Contro”er needs a minimum amount Of airspace to be ab'e to

about 73%. Acute congestion of the Air Traffic Control system has been . .
the result. A similar problem exists in United States, where each of thirty- solve conflicts). The other way to reduce congestion is to mod-

three major airports has experienced about 20,000 hours of annual delays ify the flight plans in order to adapt the demand to the available
in 1997. capacity. Then congestion is expected to be reduced by moving

_Two kinds of congestion can be identified according to the part of (i 5 |imjted domain) the time of departure of aircraft (in the past
airspace involved : Terminal congestion (around airports) and En-route

congestion (between airports). In the past, the first way to reduce these @nd in the fu.ture) and by changing the current flight paths (with
congestions was to modify the structure of the airspace in order to increase small extradistance).

the capacity (increasing the number of runways, increasing the number of Actually, the policy uses a computerized procedure based on

sectors by reducing their size). This method has a limit due to the cost in- . ) d rule i d I .
volved by new runways and the way to manage traffic in too small sectors & First Come First Served rule in order to allocate appropriate

(a controller needs a minimum amount of airspace to be able to solve con- ground holds to the aircrafts without using any global optimiza-
flicts). tion strategy. In this methodology the priority is given to flights

The other way to reduce congestion is to modify the flight plans in order . . .
to adapt the demand to the available capacity. To reach this goal, ground that have earlier estimated entry times to regulated sectors (a

delay programs are often applied on aircraft which are expected to undergo  S€Ctor is regulated if the anticipated demand excedds its capac-
congestion. Ground delays are safer (fewer aircraft waiting in the sky) and ity during a time period) and also assigns some of the available

cheaper (according to the fuel consumption). When Integer Linear Pro- ; : ; ;
gramming (ILP) is applied to the general Ground Holding Problem, it can capacity to the late filled flight plans to avoid large delays.

be shown that large delays are given to some aircraft in order to match the ~ Given the severity of the congestion problem, the examina-
sector capacities. tion of models for route - slot allocation rather than the slot-
So, to reduce congestion in sectors and avoid large delays, demand hasy||gcation only becomes apparent.

to be spread in spatial dimension too (route-slot allocation). Our research . . L .
addresses the general time-route assignment problem : This paper shows how well stochastic optimization is able to

“ One considers a sectorized airspace and a fleet of aircraft with manage this kind of problem. In the second part, a short descrip-
thelr associated route a”ddS'Ot of dﬁpaftu_ﬁ- For ea;:z fight a tion of the previous related works is given. In the third part, a
set of alternative routes and a set of possible slots of departure : e . . .

are defined. One must find “optimal route and slot allocation simplified mode'l is .developed and a mathematlcal formulat_|on
for each aircraft in order to significantly reduce the peaks of of our problem is given. In the fourth and fifth part a descrip-
congestion in sectors and airports, during one day of traffic.” tion of Genetic Algorithms and their adaptation to Air Traffic

A state of the art of the existing methods (including ILP) shows that Management (ATM) is given. Finally, the sixth part gives some

this general bi-allocation problem is usually partially treated and the whole | h licati fth | ith | d n
problem remains unsolved due to the complexity induced by this new spa- results on the application of those algorithms on a real day o

tial dimension of the state domain. Stochastic Optimization is then adapted traffic.
to the problem. The strong point of this technique is its ability to investigate

any kind of objective function without any regularities such as derivabil- Il. PREVIOUS RELATED WORKS
ity and linearity. A sector congestion measure has been developed which ’
gather the major control workload indicators. This measure is then com- In the last decade. several traffic assignment techniques [6]

puted for each proposed planning by refeering to an off-line simulation. . . .
New problem-based stochastic operators have been developed and succes§1ave been developed in order to reduce congestion in trans-

fully applied on real instances of the problem. portation networks by spreading the traffic demand in time and
Keywords—Air Traffic Management, Stochastic Optimization, Air Traf-  in space. Dafermos and Sparrow [10] coined the tenses-
fic Control, Congestion. optimizedand system-optimizettansportation networks to dis-
tinguish between two distinct situations in which users act uni-
I. INTRODUCTION laterally, in their own self-interest, in selecting their routes, and

As any human being, a controller has working limits antp Which users select routes according to what is optimal from

when the number of aircraft increases, some parts of the airspiiée Societal point of view, in that the total costs in the system
reach this limit and become congested. In the past, the first wil§ Minimized. Classical approaches are applied to static traffic
to reduce these congestions was to modify the structure of fffgnand and are mainly used to optimize traffic on a long time
airspace in order to increases the capacity (increasing the nlfiod and can only capture the macroscopic events.
ber of runways, increasing the number of sectors by reducing/VNen @ more precise matching between traffic demand and
their size). This has a limit due to the cost involved by nefPacity has to be found, microscopic events have to be taken
into account, and dynamic traffic assignment techniques have to
1Centre de Matématiques Appligées de Ecole Polytechnique / Eurocontrol be used, ([18] gives a good description of those techniques). The
2Global Optimization Laboratory (Centre d’Etudes de la Navigatiopnain ones are the fo||owing : Space-time network [22]’ Varia-

Aérienne) . . . . .
5Centre de Matématiques Appligées de Ecole Polytechnique tional Ir_1equahty [12]_, Optimal Control [13], Simulation [7] and
Dynamic Programming [17], [20], [5].

EenltrePdGIJ Mathématiques Appligées One of the most popular and used models are the Integer Lin-
cole Polytechnique ear Programming (ILP) ones [17], [15], [4] which were applied
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applied to the single airport problem [2] and to the multi-airport The objective function of the ILP formulations represents the
Problem [21]. The main difference between the two problenssst of the flight plans in term of ground delays, airborne delays
is the delays propagation as the aircrafts can perform multipleny, fuel consumption, ... etc.

flights. After that the airspace capacity (between airports) wasTo apply ILP to route-slot allocation, the routes can be easily
introduced as the Air Traffic Flow Management Problem [4hdded by changing the variables so that each variable discribes
[20] , and at a final step the Air Traffic Flow Managementhe bi-allocation of a route and a slot to each flight. The model

Rerouting Problem [4]. becomes then greater by at most a factar, NV R representing
the maximum number of alternative routes that a flight can use.
A. ILP and Air Traffic Management For instance, taking into account four alternative routes for
The ke . . gach flight will lead us to a formulation containidgx 108000
y of solving Large Scale Integer Programming prob-

lems is the obtention of strong formulations, which includ\éariables'
9 ' Therefore, ILP can't actually handle the general route-slot al-

facets of the convex hull of the problem. It is also importar?t : . :
. . . Jgcation problem if there is several routes for a great number of
to choose well adapted Linear Programming relaxations whi o

permits a fast resolution (using the simplex algorithm) of the L ghts.
and the obtention of a large number of integral variables. Gengr- ~onclusion

ally Branch and Bound is used to take part on generating integral ) ) .
solutions from the solutions given by the relaxed ILP. All the previous approaches including ILP are not able to
A weak point in ILP for ATM is the dimentionality of the for- Manage the whole bi-allocation problem due to its complexity.

mulations that limit the number of constraints that can be han-A first attempt of resolution of the whole problem can be

dled (linear constraints) and the number of variables that canfgnd in [11]. This paper present a flow modeling of the air traf-
taken into account. fic network and give a resolution principle of the route-time bi-

The variables usually used in ILP for the TFM problem [4]allocation problem based on stochastic optimization with very

[21], [19] describes the assignment of a flight to a slot by usi jgood re_sults.. The present approach is the following of this work.
0-1 Integer Progamming formulations. In those formulationd € Mmajor difference between these two approches relies on the

X} describes the affectation of the fligfito the departure slot air network queling. ) )
. In the following, a model is proposed and a method is devel-

oped that yield “very good” solutions for realistic instances of
the whole problem.

In this model, which is more realistic for air traffic, the con-
cept of route flow is no more valid and this induce a stronger
complexity.

Let us define the different used variables and constraints :

Let|F| be the cardinality of the flights set ;

T, : the number of time periods ;

S : the total number of sectors ;

Scy : the Maximum number of sectors that the flighvill
cross during its flight ; I1l. A SIMPLIFIED MODEL

S¢ . the maximum cardinality of the flight feasible slots set.

andT : the set of feasible slots for the fliglit o ) . ) .

The number of variables in such formulations is equal to Congestion in the airspace is due to aircraft which have close
Zf Ztesf |T}| so that each flight have a different departur@os't'ons in alfour-d_lmensm_nal space (one tlme dlmensmn and
slot interval. An upper bound of this number i§7| x S; three space dimensions). Itis then relevant to investigate ways to

o separate those aircraft in this four-dimensional space by chang-
The number of constraints Isix Tp+2x (Zf ZteSf IZ¢])- ing their slot of departure (time separation) or by changing their

. Introduction

An upper bound is given by$ x T, 42 x |F]. route (spatial separation) or both. Those changes must be done
In order to have a more precise description, let us take thea way that takes into account the objectives of the airlines :
example given by the french airspace : « the moving of the slot of departure must be done in a limited
« Number of sector$ = 100. domain ;
« Number of flights : 6000 flights. « the possible routes must not generate too large additional
« T, =288, representing 24 hours by 5 minutes intervals. distances.

« Sy =18, representing 30 minutes in the past and one hagg, for each flight, a new pair (slot of departure, route) will be
in the future of possible slot delays if we decide that a slghosen from two discrete and finite sets :

delay has a 5 minutes unit. . a set of possible slots of departure (around the original slot
The number of variables will b&08000 and the number of of departure) ;
constraintst0800. « a set of routes which do not increase the total path length
Taking the time inteval}, = 2 min increases the formulation too much and are approved by the airline company the
size t0270000 variables an&4000 constraints. flight belongs to.

All the literature presented models can carry with more or lessAccording to the controllers themselves, the workload in-
efficiency (depending on the strength of the formulation) songeiced in a control sector is a function of the three main fol-
refinements as managing the speed (limited entry delays on elw¥ing criteria :
sector) of each aircraft and the flights connexions. However,e the conflict workload that results from the different actions
these refinements adds more variables and constraints. of the controller to solve conflicts.



« the coordination workload corresponds to the information
exchanges between a controller and the controller in charge
of the bordering sector or between a controller and the pi-  weog, () = {
lots when an aircraft crosses a sector boundary;

« the monitoring aims at checking the different trajectories

the aircraft in gsector and induces a vyorquad. . workload has been smoothed in order to improve the robustness
We can now define our goals more precisely in the followingt e hroduced solution. This smoothing is done by averaging

t t
(1+CL_—Clg,

0 else

2 -1 ifCh > Clg

(0] N . .
,&s there are some uncertainties on the aircraft position, control

way the control workload over a time window :
one considers a fleet of aircraft with their associated
route and slot of departure. For each flight a set of al- N T
ternative routes and a set of possible slots of departure wWg, = SD+1 Z Ws,
are defined. One must find “optimal” route and slot S
allocation for each aircraft in a way that significantly where :

reduces the peak of workload in the most congested 7t represent the sect, smoothed workload duringand
sectors and in the most congested airports, during one  p js the length of the smoothing window.

day of traffic.

The workload computing is based on the aircraft trajectories Formulation of the objective function
discretization (time stepit) produced by an off-line simulation ~ The objective is defined in the following way : “ one must try
using the CATS [1] simulator. The workload indicator used & reduce congestion in the most overloaded sectors” ; this will
the summation of the coordination and monitoring workload®read the congestion over several sectors. So, we have :
regarding to critical capacities of the controller’s workload. The b p
conflict workload has been omited in order to match the opera- PR e —
tional capacity ; Moreover its computation need3 @?) com—p obj = min ) <(Z W5,)" (max WSJP)

. . L. . k=1
parison of the aircrafts positions which leads to a huge compu-

teT

tation time. where: _ _
e > cr W§, : is the congestion surface computed during
B. Mathematical formulation the day for the sectaf}.

o max;er W§ :is the maximum congestion reported during

A pair of decision variablgJ;,r;) is associated with each the day for the sectof.

flight in which ¢, is the advance or the delay from the origi- ;
. ’ . . o P isthe number of elementary sectors.
nal slot of departure ang is the new route. With this notation, .
X ) : The parameters € [0,1] et € [0, 1] gives more or less
(0,79) will be considered as the most preferred choice from the . . :
. . - . . importance to congestionaximum or to congestiosur face.
user point of view. Those two decision variablégs() will be
chosen from two finite-discrete sets\: for the slots and? for = prgplem complexity
the routes.
As it has been previously said, workload in a se&pat time
t can be expressed by the summation of two terms :

Before investigating an optimization method, the associated
complexity of our problem must be studied. The model pre-
viously developed is discrete and induces a high combinatoric
ng = w x Wmos, (t) + 1 x Weos, () ; search space. As a mater of_facthL_, An_ are the route set

and the slot moving set associated with flightthe number of

WhereWmog, (t) is the monitoring workload (quadratic termPOINts in the state domain is given by :
related to the number of aircraft overloading a sector monitor- N
ing critical capacityC,,), Wcog, (t) the coordination workload |State| = H (IRnl.|An)
(quadratic term of the number of aircraft overloading a critical
coordination capacity’..).

Wherew € [0, 1] andy € [0, 1] gives more or less importanc
to the two congestion indicators.

The quadratic terms express the fact that the controller wo

load intensity grows approximately as the square of traffic den- . .
Y9 bp y d induced by the control workload and the airport congestions ;

n=1

ewhere|S| denotes the cardinality of the s&t
For instance, for 10000 flights with 10 route choices and 10
pssible slot movings }State| = 100°°°°, Moreover, those
I&ﬁcision variables are not independent due to the connection

Sity. ” :
éll'he congestion (in term of overload) is numerically estimat 8 decomposmpn r.nethods' Ca’.‘”"t be applled. I mu;t .be no-
by : %lced that the objective function is not continuous (then it is not
' convex) and may have several equivalent optima. This prob-
lem has been proved to be a strong_N&d[3] problem with
Wmos, (t) = { (1+M§ —BxChg)—1 M >BxClg non—separablg s_tate variables which can be well addressed by
k 0 else stochastic optimization.

The most popular stochastic optimization methods are the
8 € [0.8,1] : Trade over the monitoring capacity (constraintSimulated Annealing algorithm and the Genetic algorithms. In
tuning) the following we will present and apply the Genetic Algorithms



to the ATM problem with the objective of decreasing the Air

Traffic Congestion. The GAs which uses a population of solu- f ? R“? R ?
tions are expected to give several solutions to this multimodal

problem. 3 P s
3 o o
IV. GENETIC ALGORITHMS é; ? é

Genetic Algorithms (GAs) are probabilistic search algo- A1 An D
rithms. Given an optimization problem they try to find an op- et G T T T T T T T T ]
timal solution. GAs start by initializing a set (population) con- Congestion Lt r r
taining a selection of encoded points of the search space (indi- Sochasic [ T T T [ [l [ [T T 1T T

viduals). By decoding the individual and determining its cost,
the fitness of an individual can be determined, which is used to
distinguish between better and worse individuals. A GA iter-
atively tries to improve the average fitness of a population by
construction of new populations. A new population consists of
individuals (children) constructed from the old population (par-
ents) by the use of re-combination operators. Better (above av-
erage) individuals have higher probability to be selected for re-
combination than other individuals (survival of the fittest). After
some criterion is met, the algorithm returns the best individuals
of the population.

A theorical foundation of GA and their convergence to an op-
timal solution can be found in [14], [9]. In contrast to the theor-
ical foundations, GAs have to deal with limited population sizes
and a limited number of generations. This limitation can lead
to premature convergence, which means that the algorithm gets
stuck at local optima. A lot of research has been undertaken
to overcome premature convergence (for an overview see [16]).
Also, experiments have shown that incorporation of problem
specific knowledge generally improve GAs. In this paper, atten-

tion will be paid on how specific ATM information have beemyng the stochastic trend, these two indicators are explained be-

incorporated in GAs. low - see also, fig. 1—(a) and (b)) and a smaller probability for
the others.

(a) The chromosome structure

Sector congestion

(b) The stochastic trend

Fig. 1. Special coding and stochastic problem specific knowledge

V. APPLICATION TOAIRSPACECONGESTION

A. Introduction C. Fitness Evaluation

A set of flight plans is generated from each chromosome can—T0 apply the selection operator, a fitness must be associated

didate and the whole associated day of traffic is generated. S\ggb %acrll chrorgpsoTet;]n Om't‘?r _to tivalua_tte t_he qluallty of esch
tor congestion are registered and the associated fitness is CE%‘H'V' ua’ according 1o the optimization criterion. n our prob-

o . - lem, the fitness is defined by the ratio of the congestion associ-
gféendc;Wngsgrr?bﬂzm specific features of the Genetic AIGOrithiTl. | it the initial distribution of the flight plansd(f) and the

distribution given by the chromosomehfom) :
B. Data Coding and biased initial population W(ref)

This step consists of converting each point of the state do- fitness(chrom) = W (chrom)

main into a chromosome used by the genetic algorithm. In ou
problem, the state variables (which contain all the information
needed to compute the sector workload) consist of the set of e p

flight plans. The possible new path and new slot moving have — =,

b(gen gupposed topbe chosenin ?WO discrete-finite sets asgsociated W(X) = Z <(Z WskﬁX)(b x
with each flight. In this case a straight forward coding has been
used in the sense that each chromosome is built as a matrix (s€80, whenfitness(chrom) > 1, it means that the induced
fig. 1—(a)) which gather the new slot moving (for the time of desongestion is lower than the reference one.

parture) and the new route number (for the flight path). With this

coding, a population of individuals can be created by choosind_r)a
new slot moving humber and a new route number from individ- To be able to recognize the aircraft involved in the biggest

ual sets associated with each flight with a positive probability s@ctor congestion, new information must be added to the chro-
move the flights which are involved in the congestion peaks (twosome which indicates for each gene, the maximum level of
each flight we associate the reported congestion during the flighttor congestion encountered during a flight.

"where :

—, ”
max W,

k=1 teT

Recombination Operators



(a) The mutation

Selected flight planning 1 Selected flight planning 2

Fig. 3. The French Airspace

Crossover

pute the signed indicatdF,, € [—1, 1] which is a sort of bias
to advance or delay each flightl, is a signed pondered (by
the encountered flight congestion) summation over sectors. The
Hﬂﬂm HEIEIEIE sign indicates the sector state during the entree and the exit of
New flight planning 1 New flight planning 2 the flight (congestion increase or decrease).
The mutation operator works in the following way :

« athreshold congestion level is randomly chosen ;
« then for each flight: in the chromosome the following are

(b) The crossover

Fig. 2. Stochastic Operators

applied :
o if (WS,, > Thg) then the associated flight plan is modi-
fied :
Crossover — if T; > rand(1) then we randomly assign a futur slot
The successive steps of this crossover operator are the follow-  to the flight and a random alternative route with a small
ing : probability (as instance.1).
« two parents are first selected according to their fitness ; —ifT < .—rand(l) then we randomly assign a past slot
. the summation of the sector congestion levels is computed  t© the flight and a random alternative route with a small
for each flight in both parents. For a flight total conges- probability (as instance.1). _ _
tion level in the parenp will be notedW? ; — otherwise we randomly affect the flight slot with no pref-
« an order relationship is then built with the total congestion erence for the advance or the delay with a small probabil-
level in the following way : ity (as instancé).2) and we randomly choose a new al-
— flight planingn in parent 1 is said to be “much better” than ternative route with a greater probabilty (as instandg
flight planingn in parent 2 ifiV’! < 6.W2; wheres € to avoid the congested areas the flight passes through.
[0.7,0.95]; " " « else the flight planing is unchanged.
— flight planingn in parent 2 is said to be “much better” After the processed mutation and in order to decrease the
than flight planing. in parent 1 ifiV2 < 6.W!; ground holds, some flights are given a null ground hold with

— flight planingn in parent 1 and in parent 2 are said to b@ small probability ¢.05).
“equivalent” if none of the previous relations matches; rand(z) represent a random float between the [0, x] range.
« if a flight planning “is much better” in the first parent than
in the second then it is copied in the second ; VI. RESULTS ON A DAY OF TRAFFIC
« if a flight planning “is much better” in the second pareni. Introduction

.t han in the f_|rst then |t.|s COP led in the first To test the abilities of the presented stochastic optimization
« if the two flight plannings “are equivalent” they are ran-

. o ) model, we have performed a set of experiments based on a
domly exchanged with a constant probability (0.5) whole day traffic data which corresponds to 5820 flights that
Mutation cross the french airspace (figure 3) on thé of September
As already noted, this operator only affect the flights involvet®96. The number of elementary sectors was 89, the number of
in the highest peaks of congestion, and also determine weatseetors (half an hour) flights entrance capacity constraints (en-
it is “more suitable” to delay or advance a flight (see fig.1—(b)joute constraints) was more than 2500 constraints.
So to compute thetochastic trenaver all the sectors, we com- We consider that the congestion of an elementary seftor



at time period is equal to the congestion of the sectors group-Planning restricted routes | Coo | Mo | trend SP| dt | MSM
ing Rg, to whom it belongsi§, = W}{Sk) during the same | Fixed C all all 2 8 |15 |4 |2 |60
period. By this, we take into acount the changes in the critigafrench french | all 2 G |15 |4 |2 |45
Capacities Va|ues during the day Standard all standard| 2 G 15 4 2 45
At a time periodt, if an elementary sector is not concernedAll routes all all 2 G |15 |4 12 |45
by an en-route constraint, it is allocated an unlimited capacityPirect all direct | 2 G |15 |4 12 |45
The missed capacities during the overload evaluation was abjolskl MC all all 2 G |15 |4 |2 |45
13% of the total neededt capacities. All (60 min) || all all 2 G |15 14 12 60
All (90 min) all all 2 G 15 | 4 2 20
Capacities
TABLE |

The en-route constraints expresses the number of flights that
can enter a grouping sector during a half an hour time period.
However to make a fiable planning (so that the flights are spread
over the half an hour sector entering constraint) we need to ex-
press this capacity in term of the number of flights that can be at. .10 gives the available routes (direct, standard (original
the same timelt (dt = 1 or 2 minutes to at mosi minutes by flight plan), all alternative routes):
regard to the sectors crossing times) on a given sector grouping. ~,, is the Coordination overload limit :

This number is dependant on the topology of the sector and also Mo is the monitoring one ; G denotes the ATC
on the human abilities to manage the traffic. pacities. ’
b Gi\/f]:’l'l. tue eE-route capacitﬁ/ Whic%rgorr'espor;]dslfto tr;]e NUM-_ 4 -end is the stochastic trend time window in minutes ;
er of flights that can enter the sect®rduring a half an hour . . : . :
(T = 30 minutes)Cr., andi ;s the average estimated time tha, SP is the smoothing period SP in the future and in the

the flights will spend on the sector S, we can deduce the “i ast n mmut_es. S i
- dt is the time step in minutes;

" ; t
stantaneous” (thet capacity)cs (cs = (577) x Crs) of each 3 rq1 /s the maximum allowed slot moving.
sectorS. After some simulations on the reference planning, we _ and is set for all the tests equal €9 andy — 0.1 to give

obtained an average trade off between the half an hour sectorcac. importance to the decrease of the maximum congestion
pacity and the “instantaneoud! sector capacity equal th32. caks.

We used this average trade off to initialize all the trade off ca- For the genetic Algorithm Initialization :

pacities. So, a sector that is not crossed by any flight during’ The population length50 ; '

the pre-processing simulation (we dont have an average cross- ! ]

ing time) and that have some sector capacities constraints will The nurpber of generations.00 ;
have this0.32 trade off to compute the number of allowed mon- ~ Probability of crossover0.2;

itoring aircrafts in the sector at any time. - Probability of mutation 0.6 ; _ _ .
- by regard to the used quadratic function we applied a Sigma

Alternative routes truncation scaling of the fithess function when selecting the mu-
The alternative routes were determined by preprocessifagion and crossover candidate planning.
computations. We taked more than a week of flight plans (fromThe overloads decrease results of two elementary sectors, LF-
01/09/1996 toward 08/09/1998) and filtered for each origirBDC1 and LFRRUE are presented, which represents the over-
destination the different possible routes on the french airspaggid before and after the GA optimization.
The ﬂlghtS were then simulated for all the alternative routes. We had also imp|emented two mutation deterministic strate-
The alternative routes (even if they take-off or/and land ougies to improve the matching of the sector capacities that are
side of France) were filtered regarding to origine (departure affre Task Interval technique [8], [15] and a procedure which per-
port) and destination (arrival airport) and not only by regard {@its the decongestion of the most congested (overloaded) sector,
the first and last beacon on the french airspace. This airport fifese improvments are used on the test (Taskl, MC). While set-
tering adds more flexibility on the congestion space (balaciﬂgg the same parameters as théroutes test, we used (with
traffic streams) spreading. a 0.3 probability when the mutation is selected) the Task Inter-
The presented tests were performed with the elitism principlal deterministic heuristic o000 iterations to match the half
(maintaining the best solution on the population at each Genedi¢ hour constraints and also with the same probability the MC
Algorithm iteration) and have been processed on a Pc Pentiiifprovment presented here below.
300Mhz.

DIFFERENT COMPUTATIONS PARAMETERS

real” ca-

C. Short review of the Task Interval - Taskl -

B. Parameters ] ) ] ) ]
The task interval is a technigue that addes at each iteration a

The tests parameters for the computations were : small time step (as instance 1 minute) ground hold to one se-
For the flights planning (Different Tests) — see table I: lected flight. We begin first by detecting the overloaded con-
straints and then computing for all the flights entering these con-

where : straints a cumulative mark that is used to sort the flights from the

- restricted gives the set of flights for which we can changene that passes through the greater number of congested con-
the flight plans (french airports departure flights only); straints and that have the smaller amount of time to let the flight



being exited from each constraint, to the one that have the small- N
est mark. The first sorted flight is then added a ground delay "Average_FC_60" —
time step. Before the next iteration, the overloaded constraints I 1
and flights marks are updated.

D. Satisfy a constraint - MC -

This deterministic improvment adds the minimal slot moving
increment to the flights that passes over the most overloaded
half an hour constraint to remove the overload. The flights that
passes on the constraint are sorted according to a priority rule.
The first flight is the one which has the minimum adding ground
holding time to be get out from the overloaded constraint. Then .
we iteratively apply the procedure on the sorted flights until the
constraint became non-congested.

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

(a) The Average

Notice :

The last two deterministic procedurd@askl and MC don't 1
guarantee that the ground hold delays of the flights still under
the introduced GA maximum slot moving. Also, they only work
on satisfying the half an hour constraints.

T
R

verload)

E. Results on a Real Day of Traffic (RDT) with user fixed ele-
mentary en-route capacitiesFizedC test

Congestion (o

The figure 4 presents the evolution of the best and average
solution at each iteration of the algorithm. The best congestion
performs (in the sens of the defined square criterion) a decrease
by a factor15.10 of the initial reference congestion.

The figure 5—(a) presents the congestion decrease in the LF- I T
BDC1 sector.
In the table I, we can notice that the monitoring capacity (8 (b) The Best

flights per sector during 2 minutes) was satisfied and that the av-
erage number of flights that overloads a coordination constraint Fig. 4. Evolution of the population best and fitness average
was1.47 flights.
The figure 4—(b) shows that the first steps of the optimization
were very fast. the algorithm reaches an acceptable solution ofThe sectors crossing time

less than 40 iterations. The figure 7 shows the optimization effects on the sectors
) ) . maximum and average crossing times. The boxes express the
F. RDT with real world sector grouping capacities times before optimization and the dash shows the ones after op-

Here, the monitoring capacities are determined as explairféfdization. It appears clearly that the maximum sectors crossing
above, by refeering to real provided half an hour or even houtiynes have decreased. This phenomenon is due to the rerout-
capacities. ing effect of the flights that spend too much time on congested
sectors and also on the routes choice diversity including direct

Trend_ effect . routes and other feasible alternative routes. However the aver-

The figure 5—(a) presents the effect of the stochastic tre%%e time on sectors still approximately the same. The figure 8
The computation was made by taking the samtieoutes pa- — asants the congestion decrease in the LFRRUE sector. We no-
rameters and by chosing to use the trend on the first test %@% also, that, the best fitness in the case of the presented user

to remove it on the s_econd one (V.VithOUt usingl the maXiml_JHéfined capacitiesl §.10) 4—(b) is greater than the best fitness
encountered congestion for each flight). We noticed a good i ~19) 6-(b) using the “real capacities”. The figure 9—(a) and

provment of the best planning quality during the approximate shows that moving the flights in the four dimentional space

.35 tf'rSt |t?rat|o|_r:s, tfhtin ttTe ttwo tg(sits dpelrforms the same res restricting those moves only to the french departure flights
In term ot quality ot the best provided planning. gives bad results by regard to the other scenarios. So, a global
Maximum slot moving effect (International or at least European) resolution of the problem is

The figure 6—(b) presents the effect of adding more flexibilitftuch more suitable.
on the slot moving by setting the maximum slot moving at 45,
60, 90 minutes in the past and in the future. So adding freeddie table 1l presents some processed computations :
on the slots moving increases the quality of the best planning- NBGH : is the number of flights that have a Ground hold
However, the table Il shows the “price” in term of ground delaydelays;
that was generated by the improvments. - GHS : sum of ground hold delays ;
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Fig. 5. LFBDC1 - Reducing Congestion

il M
600 700

Param NBGH | GHS DR SR OR
Fixed C 2480 | 83334 2075 | 2019 | 1726
French 1303 | 33670 922 4316 | 582
Standard 3283 | 87904 0 5820 | O

All routes 3135 | 81368 2149 | 2018 | 1653
Direct 3203 | 83878 5820 | O 0
Taskl, MC 2425 | 64515 2190 | 1967 | 1663
All (60 min) 3125 | 107072 | 2170 | 1975 | 1675
All (90 min) 3204 | 162998 | 2162 | 1963 | 1695
Param Best Average | OmC NfO
Fixed C 15.10 7.84 0 1.47
French 1.40 1.37 0.43 2.84
Standard 3.57 2.73 0.46 2.62
All routes 5.49 3.77 0.45 2.03
Direct 3.60 2.72 0.43 2.52
Taskl, MC 5.45 3.25 0.46 2.01
All (60 min) 5.9 4.11 0.46 1.96
All (90 min) 6.20 4.44 0.46 1.87

TABLE Il

DIFFERENT COMPUTATIONS
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T
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(a) The Trend effect
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(b) The Maximum slot moving effect - 45 - 60 - 90

Fig. 6. Trend effect and Maximum slot moving effect

- DR : Number of Direct routes ;

- SR : Number of Standard routes ;

- OR : Other routes ;

- Best : Best fitness ;

- Average : Average fitness ;

- OmC' : Percentage of overloaded dt monitoring constraints;

-and N fO : Average number of flights that overloads the
congesteddt constraints (Monitoring and Coordination con-
straints).

After the end of the resolution, we simulate again the flights
(only one simulation which cannot guarantee the robustness of
the above results) with the new routes and ground holds, The
number of simulated conflicts (with a horizontal normsallm
and a vertical norm oR000 ft) occuring during the day de-
creases fron2616 conflicts to2317. A decrease of about 11.4
%, also the flight probability to undergo a conflict regarding to
the total flight times encountered during the day decreases from
0.550 t0 0.487.

G. With Taskl and MC

The figure 10 shows the evolution of the best planning during
the iterations of the GA. Adding the two deterministic improv-
ments increased the convergence speed of the algorithm. This,
shows the efficacy of the Stochastic operators (Stochastic Trend
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Fig. 9. Evolution of the population best with multiple scenarios

and Encountered Flight Congestions) in solving the problem by
generating a kind of fuzzy decision variables domain decompo-
sition.

H. Conclusion

Even with the small population size used, the results given by
the genetic algorithm are very encouraging.

The computation times (4 to 6 hours for 100 iterations de-
pending on the parameters choice) are the weak point of this
GAs based method, but when using GAs as pre-tactial method
taking place during the two days preceeding the day of opera-
tions, the computations can be done on night. Also, a parallel
GA will be helpfull to decrease the processing times.

VIlI. CONCLUSION

Our objectif was the reduction of the Air Traffic Congestion
by reaching a system equilibrium. To that end, Genetic Algo-
rithms have been used and new re-combinators have been pre-
sented and shows that the use of Air Traffic specific knowledge
improves the results of the GA.

Also, the strength of this model is its ability to manage the
constraints of the airlines companies in a microscopic way by
using individual sets of decision variables associated with each
flight and can take into acount the flights connexions.
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The next steps of our research are :

(71

(8]
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Fig. 10. Adding the Two Deterministic Improvments 23]

[14]

[15]
The introduction of new alternative routes taking into agsg
count the sectors differences, to go higher on the figure 9
curves and to decrease the ground hold delays. (17]
The introduction of new stochastic operators including
more ATM specific knowledge. [18]
The hybridation of the GA with other heuristic and deter-lg]
ministic methods. An hybrid stochastic method managi&g
the whole complexity of the route-slot allocation problem
with a strong linear programming formulation managinbzo]
the slot allocation case can probably lead to very good fes;
sults.

Developing a sector complexity indicator more efficier‘[Ez]
then the only monitoring and coordination ones, by taking
into acount the sectors microscopic events as the aircrafts
separation.

Making more comparisons and statistical evaluation of the
results.

And, more delays (ground and airborne delays) optimiza-
tion (actually the delays are not optimized, however a
planning with less amount of delay is prefered during the
stochastic selection to a planning with too much delays.

We also notice a need to have more sector capacities data, not
only hourly or half an hour capacities but 5 minutes, 2 minutes
or instantaneous capacities, and more capacities related to non-
regulated sectors. Such capacities must be provided after some
studies on the controllers human abilities and the tools they use
to manage the traffic.

REFERENCES

J.M Alliot and al. Cats : A complete air traffic simulato6th DASC
1997.

G Andreatta, A.R Odoni, and O Richetta. Models for the ground holding
problem. In L Bianco and A.R Odoni, editorisarge Scale Computation
and Information Processing in Air Traffic Contrdlransportation Analy-

sis, pages 125-168. Springer-Verlag, 1993.

M Ben-Akiva, A DePalma, and | Kaysi. Dynamic network models and
driver information systems.Transportation Researct25A(5):251-266,
1991.

D Bertsimas and Stock Patterson S. The air traffic flow management prob-
lem with enroute capacitie@perations Research B6(3):406-422, 1998.

D.J Bertsimas and S Stock. The air traffic flow management problem with
en-route capacities. Technical report, A.P Sloan School of Management.
M.I.T, 1994.

L Bianco and M Bielli. Air traffic management. optimization models and
algorithms.Journal of Advanced Transportatip6(2):131-167, 1992.

10

E Cascetta and G.E Cantarella. A day-to-day and within-day dynamic
stochastic assignment mod@&kansportation Researcl25A(5):277-291,
1991.

Y Caseau and F Laburthe. Improved clp scheduling with task interval. In
Proceedings of the ICLP94 Conferend®94.

R Cerf. Une Tleorie Asymptotique des Algorithmegi®tiques PhD
thesis, Universé Montpellier Il (France), 1994.

S Dafermos and F.T Sparrow. The traffic assignment problem for a gen-
eral network. Journal of Research of the National Bureau of Standards
73B:91-118, 1969.

D Delahaye and A.R Odoni. Airspace congestion smoothing by stochastic
optimization. InProceedings of the Sixth International Conference on
Evolutionary ProgrammingNatural Selection inc., 1997.

T.L Friesz, D Bernstein, T.E Smith, and B.W Wie. A variational inequality
formulation of the dynamic network user equilibrium problédperations
Research41(1):179-191, 1993.

T.L Friesz, J Luque, R.L Tobin, and B.W Wie. Dynamic network traf-
fic assignment considered as a continuous time optimal control problem.
Operation Researct87(6):893-901, 1989.

D.E Goldberg.Genetic Algorithms in Search, Optimization and Machine
Learning Reading MA Addison Wesley, 1989.

L Maugis. Mathematical programming for the air traffic flow management
problem with en-route capacities. IFOR, 1996.

Z Michalewicz. Genetic algorithms + Data Structures = Evolution Pro-
grams Springer-verlag, 1992.

A.R Odoni. The flow management problem in air traffic control.
A.R Odoni et al, editorFlow Control of Congested Networkgolume
F38 of ASI Seriespages 269-288. NATO, 1987.

M. PapageorgiouConcise encyclopedia of traffic and transportation sys-
tems Pergamon Press, 1991.

V Tosic and al. A model to solve en route air traffic flow management
problem : a temporal and spatial cases.Phloceeding of the Air Traffic
Management SeminaEurocontrol - FAA, 1997.

P Vranas, D Bertsimas, and A.R Odoni. The multi-airport ground-holding
problem in air traffic controlOperation Research2(2):249-261, 1994.
P.B.M Vranas, D Bertsimas, and A.R Odoni. Dynamic ground-holding
policies for a network of airportslransportation Scien¢c®8(4):275-291,
1994.

D.J Zawack and G.L Thompson. A dynamic space-time network flow
model for city traffic congestionTransportation Scienc®1(3):153-162,
1987.

In



