
1

OPTIMIZED SECTORIZATION OF AIRSPACE WITH CONSTRAINTS

Huy Trandac, Philippe Baptiste - Heudiasyc Laboratory, UMR CNRS 6599, University of
Technology of Compiègne, Centre de Recherches de Royallieu,

 BP 20529, F-60205 Compiègne cedex, France.

Vu Duong - Eurocontrol Experimental Centre, Centre de Bois des Bordes,
 BP15, F-91222 Bretigny sur Orge cedex, France.

Abstract—In this paper we consider the Optimized

Airspace Sectorization Problem (ASP) with
constraints in which a given airspace is to be
partitioned into a number of sectors. The objective of
ASP is to minimize the coordination workload
between adjacent sectors. We proposed a constraint
programming approach to optimize the sectorization
that shall satisfy all specific constraints e.g. the
controllers’ workload is balanced among the sectors,
the sectors are not fragmented, aircraft can not enter
twice the same sector; aircraft cannot stay less than a
given amount of time in each sector crossed, sectors
cannot be fragmented etc.

Introduction
Sectorization is a fundamental architectural

feature of the Air Traffic Control (ATC) system. The
airspace is divided into a number of sectors, each of
them is assigned to a team of controllers (Control
Positions). Controllers of a given sector have (1) to
monitor the flights, (2) to avoid conflicts between
aircraft and (3) to exchange information with
adjacent sectors where aircraft have planned to go.
These tasks induce a workload which is often
decomposed into three corresponding parts [1, 2, 3]:

• The monitoring workload (MW) comes
from the cyclic checking of aircraft
trajectories.

• The conflict workload (CW) results from
resolution and avoidance of conflicts between
aircraft.

• The coordination workload (OW) is
basically related to the exchanges that have to
be performed between controllers of adjacent
sectors and pilots of aircraft that are crossing
through.

But the air traffic changes over the day. This

often leads to workload imbalance between the
sectors. Furthermore, it is desirable that there are
more the sectors (then more control positions) in the
dense traffic periods of the day than the weak
periods. Hence a tool to “dynamically” re-sectorize

the airspace (more precisely a part of airspace – e.g.
the sectors of a Air Traffic Control Center) is
required to cope with the evolution of the traffic.

When the sectors are designed, not only the
balance constraint must be hold (in term of
workload), but also that several following specific
constraints have to be taken into account:

• Convexity constraint. The same aircraft can
not enter twice the same sector. It is not
sensible, but it happened in the past, e.g.
national boundaries in European airspace.
For instance, the following case in the Figure
1 is not admissible:

Sector A

Sector B

traffic line

Sector boundary

Figure 1: Convexity Constraint

• Minimum distance constraint. The distance
between a sector border and a network node
must be not less than a given distance (see
Figure 2). This constraint ensures that the
controller has enough time to solve conflicts
which may occur at this node.

traffic lines

Sector B

Sector A

Sector boundary

critical point (too closed to boundary)

Figure 2: Minimum Distance Constraint

• Minimum sector crossing time constraint.
The aircraft must stay in each crossed sector
at least a given amount of time Tmin (see

2

Figure 3). This constraint ensures the
controller has enough time to control the
aircraft.

Sector B

Sector A Tmin

traffic line

Figure 3: Minimum Sector Crossing Time
Constraint

• Connectivity constraint. The sector can not
be fragmented. For example, the solution in
Figure 4 is not feasible.

Sector B

Sector A

Sector A

Figure 4: Connectivity Constraint

It is easy to see that, when the airspace is
sectorized, more the routes are cut, more the
coordination workload is induced. Hence, the
objective of the optimization of Airspace
Sectorization Problem (ASP) is to minimize the sum
of cut routes.

A genetic algorithm [4] to solve ASP has been
proposed in [1]. Chromosomes are defined as sets of
sectors’ center points; the sector is then defined as the
Voronoï diagram [5] associated to the set of center
points (i.e., a sector is a set of points that are closer to
its central point than to any other center points).
Voronoï-like sectors are geometrically convex but in
practice, sectors convex in the sense of routes (the
same route does not cross the same sector twice).
Hence a Voronoï-like sectorization might be sub-
optimal. Furthermore, sectors built by the Voronoï
diagram may lead to unfair load distribution.

 Delahaye et al. [3] have tried to improve this
approach. A sector is defined by a set of connected
vertices of the network and the chromosome contains
all information needed to define the sectors. But
again, sectors built by synthesis of connected vertices
do not ensure the convexity constraint.

More recently, airspace has been divided in
small volume units and a sector is obtained by joining
some of these elementary units [6]. Unfortunately,
the most specific constraints can not be taken into

account and for instance, the sectors can be
fragmented in the solution.

Our initial investigation on this problem has
been published in [7], but without the connectivity
constraint. In this paper, we introduce a constraint-
programming formulation to solve ASP. Our goal is
to take into account all geometrical constraints, as
defined in the next section, when building sectors.
Our approach includes a heuristic for variables and
values ordering based on the notion of gain of
Kernighan/Lin heuristic [8] for Graph Partitioning
Problem. With this model, we can compute optimal
solutions for small size instances of ASP. For the
large size instances, we use a two-phase approach:
firstly, we apply a restricted Kernighan/Lin (RKL)
heuristic to find a “good” solution; and in the second
phase, we enter a re-optimization loop, relying on the
constraint programming model, that improves this
solution.

Modeling
In this section, we firstly propose a discrete

model for ASP. The airspace is modeled by a
valuated graph and a sector in a solution of ASP is
defined as a set of vertices, without geometrical
boundaries. And secondly, we propose a way to
compute the sectors’ boundaries from a solution of
ASP.

Airspace Sectorization and Graph
Partitioning

We rely on the following model: Airspace is
made of routes that cross each other. In the following,
G = (V, E) denotes the graph representing the
airspace, where:

• V (the set of vertices) is the set of beacons
and crossing points u,

• and E (the set of edges) is such that (u, v)
belongs to E if and only if there is a direct
route from u to v.
The graph G is valuated both on its vertices and

edges as follows (see Figure 5):

• cv : conflict workload, induced by the
conflicts that occur at v, is assigned to v

• me : monitoring workload belongs to an edge
e=(u,v). It is divided in two equal parts
mu=mv=me/2 that are assigned to u and v

• oe : coordination workload assigned to the
edge e. This workload is set to 0 if the
vertices of the edge are in the same sector.

3

cu + me/2
oe

cv + me/2

Figure 5: Graph Valuation

For practical reasons, it is much more
convenient to have a static estimation of each of the
workloads. For instance, we can consider that
coordination workload of an edge is proportional to
the number of aircraft passing this edge and
monitoring workload is proportional to total time that
aircraft fly along the edge, etc... Achieving more
precise estimation is a very complex task and it is
beyond the scope of this paper.

We follow the idea of [3] that instead of
defining sectors through a geometric description, we
can define a sector as a convex set of vertices. The
main advantage of this approach is that we now work
on a purely discrete problem which is very similar to
pure weighted Graph Partitioning problem, where the
set V of valuated vertices will be partitioned into k
subsets such that (1) the weights of subsets are
bounded by given minimum and maximum weights
(2) the sum of cut-edges (cut-size) is minimized.

The Graph Partitioning problem has been
widely studied. It should be observed that this
problem is NP-complete [9]. Very efficient heuristic
procedures have been developed in the last 30 years
and very large problems can be solved efficiently in a
reasonable amount of CPU time. For more details on
Graph Partitioning, we refer [8, 10, 11, 12, 13, 14,
15, 16, 17, 18]

Because our problem is slightly different from a
pure graph partitioning problem, we rely on a
constraint programming formulation which can help
us to find a solution that satisfies the specific
constraints. This formulation will be presented in the
next section, but we consider firstly the sectors’
boundaries computation and the sector connectivity
problem.

Sectors Boundaries Computation and
Sector Connectivity

Suppose that we have an airspace sectorized
into a number of sectors, each made of a set of
vertices, we must then compute non-overlapped
sectors’ boundaries such that each sector boundary
contents all its vertices and, as mentioned above, a
sector boundary can not be fragmented. For example
in the 2D case, we must determine for each sector
one simple polygon which contents all constituent
vertices. We propose then a way to compute such

sectors’ boundaries for the case of 2D airspace. Note
that it can be easily extended for 3D case.

Definition: A Polygonal Tessellation of a plane
with a set of n points V, denoted by PT(V), is a
partitioning of the plane into n non-overlapped
polygons, called tiles, such that each polygon P(v)
contains exactly one point v∈V.

Definition: The Neighbouring Relative Graph
of a PT(V), denoted by NRG(PT(V)), is the graph
constituted by {V,E}, where edge (u,v) belongs to E if
and only if P(u) and P(v) have at least one common
side.

Figure 6: Delauney Triangulation (dashed line)
and Voronoi Diagram

Example: the Voronoi diagram (also known as
the Direchlet tessellation or Theissen tessellation) is a
subdivision of a plane into a number of tiles; each tile
has one sample point in its interior called a
generating point. All other points inside the
polygonal tile are closer to the generating point than
to any other. Its dual, the Delauney triangulation [5]
(the term triangulation is defined in the next), is
created by connecting all generating points which
share a common tile edge. Thus formed, the triangle
edges are perpendicular bisectors of the tile edges.
Hence, the Delauney triangulation is the NRG of
Voronoi Diagram (see Figure 6)

Proposition: given a polygonal tessellation
PT(V) of a set of points V in a plane and the
corresponding NRG(PT(V)). For all subset Vi⊂V, if a
sub-graph of NRG(PT(V)) corresponding to Vi is
connected, then there exit a simple polygon which
contains all points of Vi, but not any point in V \Vi.

The proof of this proposition is given by
construction of such polygon: we group the tiles
corresponding of all points in Vi and remove all
shared sides. Since each tile contains only one point
of V by the definition of PT(V), so this polygon
contains only the points of Vi, but not any point in
V\Vi

4

Hence, the boundary of a sector can be obtained
by grouping the corresponding tiles of its vertices and
a sector Vi is un-fragmented if NRG(PT(Vi)) is
connected. Our problem is now how to obtain a
polygonal tessellation of a set of points in a plane.

Definition: A Triangulation of a set of n points
V in the plane, denoted by T(V), is joining the points
of V by non-intersecting straight line segments such
that every regions are triangles.

Figure 7: Triangulation of 5 points and A
Tessellation (dotted lines)

Observation: for every triangulation T(V), we
can always determine a polygonal PT(V) such that
T(V)=NRG(PT(V)). For instance, in the Figure 7, for
each triangle, we choose a point inside the triangle
and tiles are defined by these points and the centers
points of edges.

But in our problem, two vertices of an edge in
the graph representing airspace must be considered as
neighbors each other. It means that this edge belongs
to the set of edges of NRG. What we need is then a
constrained triangulation.

Definition: given a planar graph G=(V,E), a
constrained triangulation, denoted by CT(V), with
respect to G is a triangulation T(V) such that all edges
of E are edges of T(V). Figure 8 gives an example of
a constrained triangulation.

Figure 8: A constrained triangulation (right) of a
given graph (left)

A constrained triangulation can be obtained by
adding edges that do not intersect any of existing
edges, till no more new edges can be added. This
technique has a poor complexity of O(n4). In [19], we
can find an algorithm for constrained triangulation in
O(nlogn).

Now let back to our problem: given an airspace
represented by G=(V,E), we construct a constrained
triangulation CT(V) with respect to G. The airspace

then will be sectorized into a number of subsets Vi
such that, for all Vi, the sub graph of CT(V)
corresponding to Vi is connected.

Note that for a given graph, we can obtain
different constrained triangulations. It is difficult to
known which one is the best. We must be content to
use just one of them to ensure the connectivity
constraint while finding a solution for ASP.

A Constraint Programming
Formulation for ASP

Constraint Programming
We first give a brief overview of the principles

of Constraint Programming (CP). For more details on
CP and its application, we refer [20, 21, 22, 23, 24,
25, 26, 27, 28].

Constraint Programming is a paradigm aimed at
solving Constraint Satisfaction Problems (CSP). An
instance of the CSP is described by:

• a set of variables X={x1, x2, .., xn},
• for each variable xi, a set Di of possible

values (domain of variable) ,
• a set of constraints between the variables.

A solution of the CSP is an instantiation
(assignment of values for all variables), such that all
constraints are satisfied. Note that CSPs are decision
problems; when one wants to optimize some
objective function, a common technique to look for
an optimal solution is to solve successive decision
variants of the CSP.

CSPs can be solved as follows. A tree search is
created and the variables are instantiated sequentially.
Each node of the tree search represents a partial
solution (partial assignment) and the algorithm
attempts to extend it to a full solution by assigning a
value to an uninstantiated variable. Whenever a
partial solution violates any of constraints,
backtracking is performed.

The searching process may need a search
heuristic that describes which decision is taken at a
point of search. For instance, we can define a
heuristic determining which next variable and which
its value is chosen to be instantiated.

A key idea of CP is Constraint Propagation:
when a variable is instantiated, the constraints are not
only used to check the validity of solution, but they
are also used to deduce new constraints, to remove
inconsistent values of uninstantiated variables, so to
reduce the search space.

5

In practice, to solve a CSP with CP tools such
as ILOG Solver [29], PROLOG III, IV [30, 31],
ECLISPE [32], CHOCO [33], users create the CSP
by defining its variables and constraints among them.
Constraints may be stated as one of pre-defined
constraints (arithmetic constraints on integers,
constraints on sets …) with corresponding
propagation algorithms. But new constraints may be
also defined by the user with particular constraint
propagation algorithms. Furthermore, these tools also
allow the users to specify their own specific search
heuristics.

Constraint Programming Model for ASP
Let us get back now to our problem. Given our

graph G=(V,E), |V|=n,|E|=m, let ωi be the weight of
the vertex vi and ωij be the weight of the edge (vi,vj).
We partition V, with respect to the specific
constraints, into k subsets (sectors) V1, V2, .., Vk such
that the balance constraint is met (the sum of the
vertices in each subset is bounded by Wmin and Wmax)
and the cut-size is minimized.

To model ASP, we introduce n variables xi,
which can take the value in [1..k] (xi=j means that the
vertex vi is in the subset Vj).

To simplify the definition of the objective
function and the balance constraints, we introduce the
following redundant variables:

m variables cij∈{0,1} where cij=0 ⇔ xi= xj

n.k variables yij∈{0,1} where yij=1⇔ xi=j

and ∀i=1..n, �
=

=
k

j
ijy

1

1

Objective Function
The objective function is now defined as

follows: min ijijc ω.�

Balance Constraint
The balance constraint is given by:

max

n

1i
ij.min y ,..1 WWkj i ≤≤=∀ �

=

ω

To state the specific constraints, we assume that
for each flight i, the flight plan is represented by a
ordered list of vertices),...,,(21

i
p

ii
ivvv .

Minimum Sector Crossing Time Constraint
The minimum sector crossing time constraint

states that aircraft must stay in each crossed sector at
least a given amount of time. We can then deduce the

minimum distance l1-min that the aircraft has to
perform in each crossed sector.

Now, for all triplet a<b<c, and for all the flight
plans i, if the distance l(vi

a, v
i
c) of the edge (vi

a,v
i
c) is

less than a given l1-min , the three vertices vi
a, v

i
b, v

i
c

can not be in three different sectors:

∀i ,∀a<b<c: l(vi
a, v

i
c) < l1-min � (xi

a= xi
b)∨(xi

b= xi
c)

Minimum Distance Constraint
This constraint means that the distance between

a sector border and a network node must be at least a
given distance l2-min. Thus, if we have two nodes such
that the corresponding edge has a length less than
2.l2-min, they must be in the same sector. Let l(vi

a, v
i
b)

be the length of the edge (vi
a, vi

b) belonging to the
flight plan i, this constraint can be stated as:

∀i, ∀ vi
a, v

i
b : l(v

i
a, v

i
b) ≤ 2.l2-min � (xi

a= xi
b)

Convexity Constraint
The convexity constraint states that, during the

flight, aircraft can not enter twice the same sector. It
is naturally to see that, for all flight plan i, for all
triplet xi

a, x
i
b, x

i
c , where a<b<c, if we know that xi

a
and xi

c are already in the same sector (have the same
value), we can then deduce that xi

b is also in this
sector:

∀i, ∀ a<b<c : xi
a= xi

c� xi
a= xi

b

But if we state this constraint for all flight plan
and for all triplet a<b<c, number of constraints can
be important. More practically, we can define, based
on the semantic of the constraint and for each flight
plan i, a global constraint concerning all its
corresponding variables),...,,(21

i
p

ii
ixxx . A constraint

propagation algorithm for the convexity constraint is
proposed as follows:

procedure ConvexConstraintPropag(C,idx){

For all variable i before idx in C

If val(i)<>val(idx) then

{Remove val(i) from domains of all

variables after idx in C}

Else {Instantiate to val(idx) all

 variables between i and idx}

For all variable j after idx in C

If val(j)<>val(idx) then

 {Remove val(idx) from domains of

 all variables after j in C}

Else {Instantiate to val(idx) all

 variables between idx and j}

}

Where idx is the index in the constraint C of the
variable, which is just instantiated to the value
val(idx); val(i)is the value of variable i.

6

The procedure is called whenever one of
variables concerning constraint C is instantiated. If
there are variables before idx in the constraint C that
have different values of val(idx), it means that the
aircraft has entered another sector, so the aircraft can
not return to the traversed sectors. This leads us to
remove these values from domains of all variables
after idx. If there is any variable i before idx that has
the same value of idx, then all variable between them
must take also this value. We apply the same
principle of deduction for all variables after idx.

Connectivity Constraint
This constraint ensures that the sectors are not

fragmented. As mentioned above, given an airspace
represented by G=(V,E) and a constrained
triangulation CT(V) with respect to G. The airspace
then will be sectorized into a number of subsets Vi
and the connectivity is hold if all sub graphs Vi of
CT(V) are connected.

We will define a global constraint concerning
all variable and propose an algorithm for connectivity
constraint propagation when ever a variable is
instantiated, for each partition p, as follow:

• Determine a set of variables which can take
the value p:
Vp = {xi | p∈ Domain(xi)}

• Determine the connected components of the
sub-graph of CT(V) corresponding to Vp :

Vp1 ∪ Vp2 ∪…∪ Vpk = Vp
• We can deduce that, only one of these subsets

can take the value p (be in the partition Pp).
So, if a variable xi in a subset Vpl takes
already the value p, then all variables in other
subsets can not take this value. We can
remove p from Domaine(xj), ∀xj ∈Vpm, m≠l.

Heuristic for Variable and Value Selecting
Inspired from the notion of gain of

Kernighan/Lin algorithm for Graph Partitioning, we
propose a heuristic for variable and value ordering,
which can reduce significantly the complexity of
backtrack search.

Kernighan and Lin introduced one of the
earliest graph partitioning algorithms in 1970 [8].
This algorithm is based on the notion of gain of a
vertex by moving it from its partition to the other. Let
P:V→{1,..,k} be the partitioning vector of the graph
G=(V,E) (P(u)=i means that the vertex u is in the
partition Vi) and ωuv be the weight of edge (u,v). The
internal cost and the external cost of the vertex u are
defined as follows (see example in Figure 9):

�
=∈

=
)()(,),(vPuPEvu

uvint(u) ω ; �
≠∈

=
)()(,),(

)(
vPuPEvu

uvuext ω

u

int(u) ext(u)

Figure 9: Internal and External Cost

Then, gain of moving a vertex u from its
partition to the other is given by:

g(u) = ext(u) - int(u)

Now, based on this notion, we introduce the
estimated gain for each uninstantiated variable and
for each value in its domain. Given a partial
instantiation, the set V of graph’s vertices is
partitioned into two subsets: Vknown is set of vertices vi
that the value of corresponding variable xi is already
known (instantiated) and Vunknown=V \ Vknown. Let Di
be the domain of variable xi, the temporary cut-edge
set Ct is defined as follow:

Ct= {(vi,vj)| (vi,vj)∈E, (Di≠Dj)∨(vi∈Vknown, vj∉Vknown)

∨ (vj∈Vknown ,vi∉Vknown)}

x1=1

x2=1

x3=2 x4={1,2}
x5={1,2}

x7={1,2}

v1 v2

v3 v4
v5

v6

v7

x6={1,2}

Figure 10: Temporary Cut-Edges

Informally speaking, for all edge (vi,vj): if the
domains of corresponding variables xi and xj are
different, we are sure that the edge belongs to the cut-
edge set; if one of xi and xj is instantiated, we
consider the edge to be in the cut-edge set; in other
cases, we ignore it. In Figure 10, Ct = {(v2,v3), (v1,v4),
(v1,v5), (v2,v4), (v3,v4), (v3,v6)}

We define estimated internal cost and estimated
external cost for each vertex vi such that xi is not yet
instantiated, and for each value val in its domain Di ,
as follow:

int*(vi,val)={(vi,vj)| (vi,vj)∈E, xj=val} and

ext*(vi,val)={(vi,vj)| (vi,vj)∈E, vj∉Vknown}

The int*(vi,val) is the subset of Ct which
become “internal” edges (and can be removed from

7

Ct) if vertex vi is put in partition Vval; while the
ext*(vi,val) is the set of new edges which will belong
to Ct

.

So, the estimated gain, if the variable xi is
instantiated to val (vertex vi is in partition Vval) is:

g*(xi,val)= �
∈),(int*),(valvvv

ij
iji

ω - �
∈),(*),(valvextvv

ij
iji

ω

For instance, in the previous example, g(x4,1)=
(ω14+ ω24) – (ω45+ ω46); g(x4,2)= ω34 – (ω45+ ω46)

We use the following heuristic at each node of
the search tree: the variable with maximal estimated
gain is chosen. It is instantiated to the value leading
to the largest estimated gain.

 A Two-Phase Approach
Although the above constraint programming

formulation gives good results as reported in the next
section, it can not find an optimal solution for large
size instances.

Initial Sectorization
with RKL Heuristic

Choose randomly a small subset of sectors

Local Improvement with exact
Constraint Programming Formulation

END

Yes

No

Improvements within the
last N iterations?

Figure 11: A Two-phase Approach for Airspace
Sectorization

Therefore we propose in the following a two-
phase approach: firstly, we try to find a good
solution, and then, we re-optimize it locally with our
efficient CP algorithm. The behavior of our approach
is illustrated in Figure 11.

Finding an Initial Solution
Given a huge airspace, which has to be

partitioned into K sectors, we can not find directly an
optimal solution. We must firstly find a good initial
solution. This phase is performed by using recursive
bisection schema.

At each step of bisection, an initial solution can
be found with the constraint-programming
formulation (however, it is far from optimal yet) and
then improved by using the idea of Kernighan/Lin
(KL) heuristic. The KL heuristic is used to improve
locally a solution of graph bisection. The algorithm
takes as input an initial solution V=V1∪V2, and tries
to find a sequence of node pair exchanges that leads
to a better solution.

Let g(u) and g(v) be the gains of nodes u∈V1
and v∈V2 if we move them from their partition to the
other, and ωuv be the weight of edge (u,v). The gain
of exchanging these nodes is:

g(u,v) = g(u)+g(v)-2ωuv

An iteration of the KL algorithm (called a pass)
is as follows.

procedure KLPass(V1,V2) : boolean {

 Unmark and compute gain for all nodes;

i:=1;
Repeat {

 Select ui∈V1, vi∈V2 such that g(ui,vi) is max;
 Mark ui and vi;

 Update gain for all unmarked nodes such

 as ui, vi have been exchanged;

 i++;
} Until all nodes of V1 or V2 are marked;

Choose j such that �
=

=
j

i

ii vugG
1

),(is max;

If (G>0) Then {

Move u1..uj to V2, v1..vj to V1;

Return true;

} Else Return false;

}

In a KL pass, firstly we unmark and compute
the gains for all nodes. We find an unmarked pair
u∈V1, v∈V2 such that the gain g(u, v) of exchanging u
and v is maximum (it may be negative). We mark u
and v and update the gain values of all remaining
unmarked nodes such as u and v have been
exchanged. Repeat this procedure of pair selecting
until all nodes in one of V1, V2 are marked. Now we
have an ordered list of pairs (ui,vi), and we find the

index j such that �
=

j

i

ii vug
1

),(is maximum. If this sum

is positive, we perform the exchanges of j node pairs
and the result of this pass can be taken as input of
another pass. Otherwise, we end the algorithm.

procedure KLBisection(Graph G=(V,E)){

Find an initial bisection V=V1∪V2;
Repeat {changed := KLPass(V1,V2)}

Until not(change)}

8

In the KL algorithm, the search of sequence of
node pairs to be exchanged is performed for all nodes
of graph. But the exchange of an arbitrary node pair
could violate our ATC constraints. We propose so a
Restricted Kernighan/Lin (RKL) heuristic for
airspace bisection: at each step, we find a set of nodes
such that their moves do not violate the ATC
constraints; furthermore, the validity of each
exchange is verified before it is performed.

1

2

7
8

11

4

12
3

10

5
6

13

9

Figure 12: Example for RKL Heuristic

Consider the graph in Figure 12 for example,
we have three flight plans: (1,2,3,4,5,6), (7,8,9,4,10)
and (11,4,12,13). We can distinct two cases as
follows:

If all the nodes of a flight plan are in the same
sector, as (11,4,12,13), it is easy to see that only its
two extremities, 11 and 13 in this case, can be moved
to other sector without violation of the convexity
constraint and without violation of connectivity
constraint if they are connected to the other sector by
the edges of constrained triangulation. We put them
in a set of “potential nodes”. The others must be put
in a set “unchangeable nodes”.

If the flight plan crosses the border of sectors, as
(1,2,3,4,5,6) and (7,8,9,4,10), only two extremities of
the cut edge can be exchanged and then can be put in
the potential nodes set (but note that these two nodes
can not be exchanged directly). We have three nodes
3, 4 and 9 for the case.

So, we find a pair to be exchanged only among
the potential nodes, but which are not unchangeable.

Because of minimum sector crossing time and
minimum distance constraints, some vertices must be
in the same sector. To meet these constraints, we
introduce the notion of cluster of exchange: if v1, v2 ...
vq must be in the same sector, we call them a cluster.
Naturally, vertices of a cluster must be moved all at
once and, if one of them is unchangeable, so is the
cluster.

At last, the balance constraint must be verified
before each exchange.

Random Local Re-optimization
To improve the solution obtained in the

previous step, we propose a random local re-
optimization scheme as follows. We repeat to choose
randomly a group of adjacent sectors and use the
constraint- programming formulation to find its
optimal solution. The procedure is stopped if after
predefined N consecutive iterations, the solution is
not longer improved.

Experimental Results
The constraint-based model has been implemented

with the constraint programming library CHOCO
[33] on top of CLAIRE [34]. All programs have been
run on a PC Athlon 2000+, 512MB RAM, under
Windows XP. For our experimental study, we have
generated several classes of graphs; each class
containing 50 problem instances with the same
number of vertices. At first, some vertices
representing airports are generated, the coordinates
are uniformly distributed. An edge between two
vertices means that there is at least a flight joining
these airports. The probability of existence of edge
between two vertices is uniform and number of
flights passing this edge is also from uniform
distribution n∈[1,200]. And then we calculate all
crossing points of graph and consider them as
vertices. The graph is taken if it has a desired number
of vertices.

Table 1 and Figure 13 report the results
obtained when we try to find the optimal solution of
the bisection problem (k=2). In this table, Avg Bk
and Avg CPU are respectively the average number of
backtracks performed and required CPU time to solve
an instance. %<4min is percentage of instances
which can be solved within 4 minutes. In these
results, it is clear that, as far as bisection is
concerned, the model is applicable for up to 80
vertices instances, with a reasonable execution time.

Table 1: Experimental Results of Finding Optimal
Solutions

Instance
size Avg Bk Avg CPU(ms) %< 4min

30 480 268 100
40 1278 1009 100
50 3472 3586 100
60 7173 10667 100
70 17232 30925 100
80 28986 71342 78

9

0
10000
20000
30000
40000
50000
60000
70000
80000

30 40 50 60 70 80

Instance size

Avg Bk Avg CPU

Figure 13: Average Bk and CPU Time for an
Optimal Bisection

Table 2: Experimental Results of Finding First
Solution and Re-Optimization

Class

Avg
first

CutSize

Avg
re-optimized

Cutsize

Avg total
CPU
(ms)

Avg %
reduction

60/4 3203 2124 4107 34%

70/5 4157 2847 4818 32%

80/6 5161 3469 6192 33%

90/7 6043 4321 5503 28%

100/8 6884 4957 6363 28%

200/16 15349 11728 19196 24%

500/40 41217 34028 203912 17%

Figure 14: A 100-Vertices Graph Sectorized Into 8

Table 2 reports the performance of the re-
optimization phase and the execution time to partition
60 vertices into 4 sectors, 70 vertices into 5 sectors,
…, and 500 vertices into 40 sectors. Avg first

CutSize and Avg re-optimized CutSize are
respectively the average cutsize of the first solution
and the average cutsize of the solution re-optimized.
Avg total CPU is the average total execution time (to
find a first solution and to re-optimize it)

Conclusion
In this paper, we have proposed a constraint

programming formulation to optimize the
sectorization that satisfies all the specific constraints.
Based on the notion of gain of Kernighan/Lin
heuristic for Graph Partitioning, we have defined a
heuristic for variables and values ordering while
searching solutions. A Restricted Kernighan/Lin
heuristic is also proposed to improve the initial
solution of bisection. This formulation can find
optimal solution for small size instances of the
problem. For larger instances, we use a two-step
approach: find an initial solution and then re-optimize
it locally.

This model is implemented and experimented
with some randomized data. The initial results are
promising, a 500-vertices graph can be sectorized
into 40 sectors within 4 minutes. The study is
pursued to improve and extend the model. One of
next extensions is to take into account the flight
levels to separate a “heavy” network node to several
sub-nodes.

Keywords: Airspace Sectorization, Constraint
Programming, Graph Partitioning

References
[1] Delahaye D., 1995. Optimisation de la
sectorisation de l'espace aérien par algorithmes
génétiques. Doctorat Informatique ENSAE.

[2] Delahaye D., J.M. Alliot, M. Schoenauer and J. L.
Farges, 1995. Genetic Algorithms for automatic
regroupement of Air Traffic Control sectors. Proc. of
the 4th Int. Conference on Evolutionary
Programming.

[3] Delahaye D., M. Schoenauer and J. M. Alliot,
1998. Airspace Sectoring by Evolutionary
Computation. IEEE International Congress on
Evolutionary Computation.

[4] Goldberg D. E., 1989. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Addison-Wesley.

[5] Okabe A. and al., 1992. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams.
New York: Wiley.

10

[6] Manuel S., M. L. José, M. B. Victor, M.R. José,
2002. GENES : a Genetic Algorithms and Fast Time
Simulation. 3nd ATM R&D Symposium, Spain.

[7] TranDac H., Baptiste P., Duong V., 2002. A
Constraint Programming Formulation for Dynamic
AirSpace Sectorization. Proc. of 21st Digital Avionics
Systems Conference.

[8] Kernighan B.W. and S. Lin, 1970. An efficient
heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49:291-307.

[9] Garey M. R., D. S. Johnson, 1979. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman.

[10] Barnard S.T. and H. D. Simon,1993. A fast
multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. In
Proc. 6th SIAM Conf. Parallel Processing for
Scientific Computing, pages 711-718.

[11] Fiduccia C. and R. Mattheyses, 1982. A linear
time heuristic for improving network partitions. In
19th IEEE Design Automation Conference, pages
175-181.

[12] Gilbert J.R., G. L. Miller and S. H. Teng, 1995.
Geometric mesh partitioning: Implementations and
experiments. In Proc. International Parallel
Processing Symposium, pages 418--427.

[13] Leland R. and B. Hendrickson, 1994. An
empirical study of static load balancing algorithms.
In Proc. Scalable High Performance Comput. Conf.,
pages 682-685.

[14] Hendrickson B. and R. Leland, 1995. An
improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM J. Sci.
Comput., 16(2):452--469.

[15] Hendrickson B. and R. Leland, 1995. A
multilevel algorithm for partitioning graphs. In Proc.
Supercomputing'95.

[16] Karypis G. and V. Kumar, 1995. A fast and high
quality multi-level scheme for partitioning irregular
graphs. Technical Report 95-035, University of
Minnesota, Department of Computer Science.

[17] Karypis G. and V. Kumar, 1995. Multilevel
k-way partitioning scheme for irregular graphs.
Technical Report 95-064, University of Minnesota,
Department of Computer Science.

[18] Fjällström P-O. 1998. Algorithms for Graph
Partitioning: A Survey. Linköping University
Electronic Press.

[19] Chen J., 1996. Computational Geometry:
Methods and Applications. Computer Science
Department, Texas A&M University

[20] Baptiste Ph., C. Le Pape and W. Nuijten.
Constraint Based Scheduling. Kluwer Academic
Publishers

[21] Bartak R.,1998. Online Guide to Constraint
Programming. http://kti.mff.cuni.cz/~bartak

[22] Berlandier B., 1995. Improving Domain
Filtering using Restricted Path Consistency.
Proceedings of the IEEE CAIA-95

[23] Barbara M. S., 1995. A tutorial on Constraint
Programming

[24] Han C., C. Lee, 1988. Comments on Morh and
Henderson's path consistency algorithm. Artificial
Intelligence, 36:125-130.

[25] Kumar V., 1992. Algorithms for Constraint
Satisfaction Problems: A Survey. AI Magazine
13(1):32-44.

[26] Mackworth A., 1977. Consistency in Networks
of Relations. Artificial Intelligence 8:99-118.

[27] Montanari U., 1974. Networks of Constraints:
Fundamental Properties and Applications to Picture
Processing. Information Science,7:95-132.

[28] Mohr R. and T. Henderson, 1986. Arc and path
consistency revisited. Artificial Intelligence, 28:225-
233.

[29] Puget, J-F, 1994. A C++ Implementation of
CLP. Proceedings of SPICIS 94, Singapore.

[30] Colmerauer A., 1990. An introduction to
PROLOG-III. Communications of the ACM,
33(7):69—90.

[31] Colmerauer A., 1996. Les bases de Prolog IV.
Publication interne du LIM. http://www.lim.univ-
mrs.fr/~colmer/

[32] Wallace M., S. Novello, J. Schimpf, 1997.
ECLiPSe : A Platform for Constraint Logic
Programming. Technical report, IC-Parc, Imperial
College, London. http://www.icparc.ic.ac.uk/eclipse

[33] Laburthe F. CHOCO – a Constraint
Programming kernel for solving combinatorial
optimization problems.

[34] Caseau Y. and F. Laburthe. Introduction to the
CLAIRE Programming Language.

11

Biographies of the authors
Huy TranDac is a PhD student of the University

of Technology of Compiègne. He graduated in
Computer Science in 1994 from the Polytechnic
University of Ho-Chi-Minh City. From 1994 to 1997,
he was assistant professor at the Faculty of
Information Technology, CanTho University. He
received two MSc degrees in Computer science: from
"L'Institut Francophone d'Informatique" de Hanoi
(1999) and from the Institut National Polytechnique
de Toulouse (2000). He is currently preparing his
PhD thesis at EUROCONTROL on the problem of
dynamic sectorization. His research interests include
operations research and graph theory.

Dr. Philippe Baptiste is a researcher at the
French National Research Foundation (CNRS,
Heudiasyc) and associate professor at Ecole
Polytechnique. His main research interests are
combinatorial optimization and constraint
programming. He completed a PhD from the
University of Technology of Compiègne in 1998. He
has received both the ``Robert Faure'' award from the
French Operations Research Society and the ``Cor
Baayen'' award from the European Research
Consortium for Informatics and Mathematics.
Philippe Baptiste has published more that 10 papers
in international journals and has contributed to 30
international conferences. He is an associate editor of
"Journal of Scheduling". Philippe is conducting a
research contract with EUROCONTROL on dynamic
sectorization of airspace.

Dr. Vu Duong is currently Business Area
Manager for Innovative Research at
EUROCONTROL Experimental Center, and
EUROCONTROL CARE Innovative Research
Action Manager. Prior to this position, he had been at
the origin of FREER initiative as its Project Manager,
then Program Manager Simulator Development
Program. Vu holds a Master Degree in Engineering
and a PhD in Artificial Intelligence, both from Ecole
Nationale des Ponts et Chaussees, Paris.

