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Abstract—In this paper we consider the Optimized 

Airspace Sectorization Problem (ASP) with 
constraints in which a given airspace is to be 
partitioned into a number of sectors. The objective of 
ASP is to minimize the coordination workload 
between adjacent sectors. We proposed a constraint 
programming approach to optimize the sectorization 
that shall satisfy all specific constraints e.g. the 
controllers’ workload is balanced among the sectors, 
the sectors are not fragmented, aircraft can not enter 
twice the same sector; aircraft cannot stay less than a 
given amount of time in each sector crossed, sectors 
cannot be fragmented etc. 

Introduction 
Sectorization is a fundamental architectural 

feature of the Air Traffic Control (ATC) system. The 
airspace is divided into a number of sectors, each of 
them is assigned to a team of controllers (Control 
Positions). Controllers of a given sector have (1) to 
monitor the flights, (2) to avoid conflicts between 
aircraft and (3) to exchange information with 
adjacent sectors where aircraft have planned to go. 
These tasks induce a workload which is often 
decomposed into three corresponding parts [1, 2, 3]: 

• The monitoring workload (MW) comes 
from the cyclic checking of aircraft 
trajectories.  

• The conflict workload (CW) results from 
resolution and avoidance of conflicts between 
aircraft. 

• The coordination workload (OW) is 
basically related to the exchanges that have to 
be performed between controllers of adjacent 
sectors and pilots of aircraft that are crossing 
through. 

 
But the air traffic changes over the day. This 

often leads to workload imbalance between the 
sectors. Furthermore, it is desirable that there are 
more the sectors (then more control positions) in the 
dense traffic periods of the day than the weak 
periods. Hence a tool to “dynamically” re-sectorize 

the airspace (more precisely a part of airspace – e.g. 
the sectors of a Air Traffic Control Center) is 
required to cope with the evolution of the traffic. 

When the sectors are designed, not only the 
balance constraint must be hold (in term of 
workload), but also that several following specific 
constraints have to be taken into account: 

• Convexity constraint. The same aircraft can 
not enter twice the same sector. It is not 
sensible, but it happened in the past, e.g. 
national boundaries in European airspace. 
For instance, the following case in the Figure 
1 is not admissible:  
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Figure 1: Convexity Constraint 
 

• Minimum distance constraint. The distance 
between a sector border and a network node 
must be not less than a given distance (see 
Figure 2). This constraint ensures that the 
controller has enough time to solve conflicts 
which may occur at this node. 

 

traffic lines 

Sector B 

Sector A 

Sector boundary 

critical point (too closed to boundary) 

 

Figure 2: Minimum Distance Constraint 

• Minimum sector crossing time constraint. 
The aircraft must stay in each crossed sector 
at least a given amount of time Tmin (see 
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Figure 3). This constraint ensures the 
controller has enough time to control the 
aircraft. 
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Figure 3: Minimum Sector Crossing Time 
Constraint 

• Connectivity constraint. The sector can not 
be fragmented. For example, the solution in 
Figure 4 is not feasible. 
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Figure 4: Connectivity Constraint 

It is easy to see that, when the airspace is 
sectorized, more the routes are cut, more the 
coordination workload is induced. Hence, the 
objective of the optimization of Airspace 
Sectorization Problem (ASP) is to minimize the sum 
of cut routes. 

A genetic algorithm [4] to solve ASP has been 
proposed in [1]. Chromosomes are defined as sets of 
sectors’ center points; the sector is then defined as the 
Voronoï diagram [5] associated to the set of center 
points (i.e., a sector is a set of points that are closer to 
its central point than to any other center points). 
Voronoï-like sectors are geometrically convex but in 
practice, sectors convex in the sense of routes (the 
same route does not cross the same sector twice). 
Hence a Voronoï-like sectorization might be sub-
optimal. Furthermore, sectors built by the Voronoï 
diagram may lead to unfair load distribution. 

 Delahaye et al. [3] have tried to improve this 
approach. A sector is defined by a set of connected 
vertices of the network and the chromosome contains 
all information needed to define the sectors. But 
again, sectors built by synthesis of connected vertices 
do not ensure the convexity constraint. 

More recently, airspace has been divided in 
small volume units and a sector is obtained by joining 
some of these elementary units [6]. Unfortunately, 
the most specific constraints can not be taken into 

account and for instance, the sectors can be 
fragmented in the solution.  

Our initial investigation on this problem has 
been published in [7], but without the connectivity 
constraint. In this paper, we introduce a constraint-
programming formulation to solve ASP. Our goal is 
to take into account all geometrical constraints, as 
defined in the next section, when building sectors. 
Our approach includes a heuristic for variables and 
values ordering based on the notion of gain of 
Kernighan/Lin heuristic [8] for Graph Partitioning 
Problem. With this model, we can compute optimal 
solutions for small size instances of ASP. For the 
large size instances, we use a two-phase approach: 
firstly, we apply a restricted Kernighan/Lin (RKL) 
heuristic to find a “good” solution; and in the second 
phase, we enter a re-optimization loop, relying on the 
constraint programming model, that improves this 
solution.  

Modeling 
In this section, we firstly propose a discrete 

model for ASP. The airspace is modeled by a 
valuated graph and a sector in a solution of ASP is 
defined as a set of vertices, without geometrical 
boundaries. And secondly, we propose a way to 
compute the sectors’ boundaries from a solution of 
ASP. 

Airspace Sectorization and Graph 
Partitioning 

We rely on the following model: Airspace is 
made of routes that cross each other. In the following, 
G = (V, E) denotes the graph representing the 
airspace, where: 

• V (the set of vertices) is the set of beacons 
and crossing points u,  

• and E (the set of edges) is such that (u, v) 
belongs to E if and only if there is a direct 
route from u to v. 
The graph G is valuated both on its vertices and 

edges as follows (see Figure 5): 

• cv : conflict workload, induced by the 
conflicts that occur at v, is assigned to v 

• me : monitoring workload belongs to an edge 
e=(u,v). It is divided in two equal parts 
mu=mv=me/2 that are assigned to u and v 

• oe : coordination workload assigned to the 
edge e. This workload is set to 0 if the 
vertices of the edge are in the same sector. 
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Figure 5: Graph Valuation 

For practical reasons, it is much more 
convenient to have a static estimation of each of the 
workloads. For instance, we can consider that 
coordination workload of an edge is proportional to 
the number of aircraft passing this edge and 
monitoring workload is proportional to total time that 
aircraft fly along the edge, etc... Achieving more 
precise estimation is a very complex task and it is 
beyond the scope of this paper. 

We follow the idea of [3] that instead of 
defining sectors through a geometric description, we 
can define a sector as a convex set of vertices. The 
main advantage of this approach is that we now work 
on a purely discrete problem which is very similar to 
pure weighted Graph Partitioning problem, where the 
set V of valuated vertices will be partitioned into k 
subsets such that (1) the weights of subsets are 
bounded by given minimum and maximum weights 
(2) the sum of cut-edges (cut-size) is minimized. 

The Graph Partitioning problem has been 
widely studied. It should be observed that this 
problem is NP-complete [9]. Very efficient heuristic 
procedures have been developed in the last 30 years 
and very large problems can be solved efficiently in a 
reasonable amount of CPU time. For more details on 
Graph Partitioning, we refer [8, 10, 11, 12, 13, 14, 
15, 16, 17, 18] 

Because our problem is slightly different from a 
pure graph partitioning problem, we rely on a 
constraint programming formulation which can help 
us to find a solution that satisfies the specific 
constraints. This formulation will be presented in the 
next section, but we consider firstly the sectors’ 
boundaries computation and the sector connectivity 
problem. 

Sectors Boundaries Computation and 
Sector Connectivity 

Suppose that we have an airspace sectorized 
into a number of sectors, each made of a set of 
vertices, we must then compute non-overlapped 
sectors’ boundaries such that each sector boundary 
contents all its vertices and, as mentioned above, a 
sector boundary can not be fragmented. For example 
in the 2D case, we must determine for each sector 
one simple polygon which contents all constituent 
vertices. We propose then a way to compute such 

sectors’ boundaries for the case of 2D airspace. Note 
that it can be easily extended for 3D case. 

Definition: A Polygonal Tessellation of a plane 
with a set of n points V, denoted by PT(V), is a 
partitioning of the plane into n non-overlapped 
polygons, called tiles, such that each polygon P(v) 
contains exactly one point v∈V. 

Definition: The Neighbouring Relative Graph 
of a PT(V), denoted by NRG(PT(V)), is the graph 
constituted by {V,E}, where edge (u,v) belongs to E if 
and only if P(u) and P(v) have at least one common 
side. 

 

Figure 6: Delauney Triangulation (dashed line) 
and Voronoi Diagram 

Example: the Voronoi diagram (also known as 
the Direchlet tessellation or Theissen tessellation) is a 
subdivision of a plane into a number of tiles; each tile 
has one sample point in its interior called a 
generating point. All other points inside the 
polygonal tile are closer to the generating point than 
to any other. Its dual, the Delauney triangulation [5] 
(the term triangulation is defined in the next), is 
created by connecting all generating points which 
share a common tile edge. Thus formed, the triangle 
edges are perpendicular bisectors of the tile edges. 
Hence, the Delauney triangulation is the NRG of 
Voronoi Diagram (see Figure 6) 

Proposition: given a polygonal tessellation 
PT(V) of a set of points V in a plane and the 
corresponding NRG(PT(V)). For all subset Vi⊂V, if a 
sub-graph of NRG(PT(V)) corresponding to Vi is 
connected, then there exit a simple polygon which 
contains all points of Vi, but not any point in V \Vi. 

The proof of this proposition is given by 
construction of such polygon: we group the tiles 
corresponding of all points in Vi and remove all 
shared sides. Since each tile contains only one point 
of V by the definition of PT(V), so this polygon 
contains only the points of Vi, but not any point in 
V\Vi 
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Hence, the boundary of a sector can be obtained 
by grouping the corresponding tiles of its vertices and 
a sector Vi is un-fragmented if NRG(PT(Vi)) is 
connected. Our problem is now how to obtain a 
polygonal tessellation of a set of points in a plane. 

Definition: A Triangulation of a set of n points 
V in the plane, denoted by T(V), is joining the points 
of V by non-intersecting straight line segments such 
that every regions are triangles. 

 

 

Figure 7: Triangulation of 5 points and A 
Tessellation (dotted lines) 

Observation: for every triangulation T(V), we 
can always determine a polygonal PT(V) such that 
T(V)=NRG(PT(V)). For instance, in the Figure 7, for 
each triangle, we choose a point inside the triangle 
and tiles are defined by these points and the centers 
points of edges. 

But in our problem, two vertices of an edge in 
the graph representing airspace must be considered as 
neighbors each other. It means that this edge belongs 
to the set of edges of NRG. What we need is then a 
constrained triangulation. 

Definition: given a planar graph G=(V,E),  a 
constrained triangulation, denoted by CT(V), with 
respect to G is a triangulation T(V) such that all edges 
of E are edges of T(V). Figure 8 gives an example of 
a constrained triangulation. 

 

 

Figure 8: A constrained triangulation (right) of a 
given graph (left) 

A constrained triangulation can be obtained by 
adding edges that do not intersect any of existing 
edges, till no more new edges can be added. This 
technique has a poor complexity of O(n4). In [19], we 
can find an algorithm for constrained triangulation in 
O(nlogn). 

Now let back to our problem: given an airspace 
represented by G=(V,E), we construct a constrained 
triangulation CT(V) with respect to G. The airspace 

then will be sectorized into a number of subsets Vi 
such that, for all Vi, the sub graph of CT(V) 
corresponding to Vi is connected. 

Note that for a given graph, we can obtain 
different constrained triangulations. It is difficult to 
known which one is the best. We must be content to 
use just one of them to ensure the connectivity 
constraint while finding a solution for ASP. 

A Constraint Programming 
Formulation for ASP 

Constraint Programming 
We first give a brief overview of the principles 

of Constraint Programming (CP). For more details on 
CP and its application, we refer [20, 21, 22, 23, 24, 
25, 26, 27, 28].  

Constraint Programming is a paradigm aimed at 
solving Constraint Satisfaction Problems (CSP). An 
instance of the CSP is described by: 

• a set of variables X={x1, x2, .., xn}, 
• for each variable xi, a set Di of possible 

values (domain of variable) , 
• a set of constraints between the variables. 

A solution of the CSP is an instantiation 
(assignment of values for all variables), such that all 
constraints are satisfied. Note that CSPs are decision 
problems; when one wants to optimize some 
objective function, a common technique to look for 
an optimal solution is to solve successive decision 
variants of the CSP. 

CSPs can be solved as follows. A tree search is 
created and the variables are instantiated sequentially. 
Each node of the tree search represents a partial 
solution (partial assignment) and the algorithm 
attempts to extend it to a full solution by assigning a 
value to an uninstantiated variable. Whenever a 
partial solution violates any of constraints, 
backtracking is performed.  

The searching process may need a search 
heuristic that describes which decision is taken at a 
point of search. For instance, we can define a 
heuristic determining which next variable and which 
its value is chosen to be instantiated. 

A key idea of CP is Constraint Propagation: 
when a variable is instantiated, the constraints are not 
only used to check the validity of solution, but they 
are also used to deduce new constraints, to remove 
inconsistent values of uninstantiated variables, so to 
reduce the search space. 
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In practice, to solve a CSP with CP tools such 
as ILOG Solver [29], PROLOG III, IV [30, 31], 
ECLISPE [32], CHOCO [33], users create the CSP 
by defining its variables and constraints among them. 
Constraints may be stated as one of pre-defined 
constraints (arithmetic constraints on integers, 
constraints on sets …) with corresponding 
propagation algorithms. But new constraints may be 
also defined by the user with particular constraint 
propagation algorithms. Furthermore, these tools also 
allow the users to specify their own specific search 
heuristics.  

Constraint Programming Model for ASP 
Let us get back now to our problem. Given our 

graph G=(V,E), |V|=n,|E|=m, let ωi be the weight of 
the vertex vi and ωij be the weight of the edge (vi,vj). 
We partition V, with respect to the specific 
constraints, into k subsets (sectors) V1, V2, .., Vk such 
that the balance constraint is met (the sum of the 
vertices in each subset is bounded by Wmin and Wmax) 
and the cut-size is minimized.  

To model ASP, we introduce n variables xi, 
which can take the value in [1..k] (xi=j means that the 
vertex vi  is in the subset Vj). 

To simplify the definition of the objective 
function and the balance constraints, we introduce the 
following redundant variables: 

m variables cij∈{0,1} where cij=0 ⇔  xi= xj  

n.k variables yij∈{0,1} where   yij=1⇔ xi=j   

and ∀i=1..n, �
=

=
k

j
ijy

1

1  

Objective Function 
The objective function is now defined as 

follows:   min ijijc ω.�  

Balance Constraint 
The balance constraint is given by: 

max

n

1i
ij.min   y         ,..1 WWkj i ≤≤=∀ �

=

ω  

To state the specific constraints, we assume that 
for each flight i, the flight plan is represented by a 
ordered list of vertices ),...,,( 21

i
p

ii
ivvv . 

Minimum Sector Crossing Time Constraint  
The minimum sector crossing time constraint 

states that aircraft must stay in each crossed sector at 
least a given amount of time. We can then deduce the 

minimum distance l1-min that the aircraft has to 
perform in each crossed sector.  

Now, for all triplet a<b<c, and for all the flight 
plans i, if the distance l(vi

a, v
i
c) of the edge (vi

a,v
i
c) is 

less than a given l1-min , the three vertices  vi
a, v

i
b, v

i
c 

can not be in three different sectors: 

∀i ,∀a<b<c: l(vi
a, v

i
c) < l1-min � (xi

a= xi
b)∨(xi

b= xi
c) 

Minimum Distance Constraint 
This constraint means that the distance between 

a sector border and a network node must be at least a 
given distance l2-min. Thus, if we have two nodes such 
that the corresponding edge has a length less than 
2.l2-min, they must be in the same sector. Let l(vi

a, v
i
b) 

be the length of the edge (vi
a, vi

b) belonging to the 
flight plan i, this constraint can be stated as: 

∀i, ∀ vi
a, v

i
b : l(v

i
a, v

i
b) ≤ 2.l2-min � (xi

a= xi
b) 

Convexity Constraint 
The convexity constraint states that, during the 

flight, aircraft can not enter twice the same sector. It 
is naturally to see that, for all flight plan i, for all 
triplet   xi

a, x
i
b, x

i
c , where a<b<c, if we know that xi

a  
and xi

c are already in the same sector (have the same 
value), we can then deduce that xi

b  is also in this 
sector: 

∀i, ∀ a<b<c  : xi
a= xi

c� xi
a= xi

b 

But if we state this constraint for all flight plan 
and for all triplet a<b<c, number of constraints can 
be important. More practically, we can define, based 
on the semantic of the constraint and for each flight 
plan i, a global constraint concerning all its 
corresponding variables ),...,,( 21

i
p

ii
ixxx . A constraint 

propagation algorithm for the convexity constraint is 
proposed as follows: 

procedure ConvexConstraintPropag(C,idx){ 

For all variable i before idx in C 

If val(i)<>val(idx) then 

{Remove val(i) from domains of all  

variables after idx in C} 

Else {Instantiate to val(idx) all 

   variables between i and idx} 

For all variable j after idx in C 

If val(j)<>val(idx) then 

 {Remove val(idx) from domains of 

 all variables after j in C} 

Else {Instantiate to val(idx) all  

     variables between idx and j} 

} 

Where idx is the index in the constraint C of the 
variable, which is just instantiated to the value 
val(idx); val(i)is the value of variable i. 
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The procedure is called whenever one of 
variables concerning constraint C is instantiated. If 
there are variables before idx in the constraint C that 
have different values of val(idx), it means that the 
aircraft  has entered another sector, so the aircraft can 
not return to the traversed sectors. This leads us to 
remove these values from domains of all variables 
after idx. If there is any variable i before idx that has 
the same value of idx, then all variable between them 
must take also this value. We apply the same 
principle of deduction for all variables after idx. 

Connectivity Constraint 
This constraint ensures that the sectors are not 

fragmented. As mentioned above, given an airspace 
represented by G=(V,E) and a constrained 
triangulation CT(V) with respect to G.  The airspace 
then will be sectorized into a number of subsets Vi 
and the connectivity is hold if all sub graphs Vi of 
CT(V) are connected. 

We will define a global constraint concerning 
all variable and propose an algorithm for connectivity 
constraint propagation when ever a variable is 
instantiated, for each partition p, as follow: 

• Determine a set of variables which can take 
the value p:  
Vp = {xi | p∈ Domain(xi)} 

• Determine the connected components of the 
sub-graph of CT(V) corresponding to Vp : 

Vp1 ∪ Vp2 ∪…∪ Vpk = Vp 
• We can deduce that, only one of these subsets 

can take the value p (be in the partition Pp). 
So, if a variable xi in a subset Vpl takes 
already the value p, then all variables in other 
subsets can not take this value. We can 
remove p from Domaine(xj), ∀xj ∈Vpm, m≠l. 

 
Heuristic for Variable and Value Selecting 
Inspired from the notion of gain of 

Kernighan/Lin algorithm for Graph Partitioning, we 
propose a heuristic for variable and value ordering, 
which can reduce significantly the complexity of 
backtrack search.  

Kernighan and Lin introduced one of the 
earliest graph partitioning algorithms in 1970 [8]. 
This algorithm is based on the notion of gain of a 
vertex by moving it from its partition to the other. Let 
P:V→{1,..,k} be the partitioning vector of the graph 
G=(V,E) (P(u)=i  means that the vertex u is in the 
partition Vi) and ωuv be the weight of edge (u,v). The 
internal cost and the external cost of the vertex u are 
defined as follows (see example in Figure 9):  

�
=∈

=
)()(,),( vPuPEvu

uvint(u) ω ;  �
≠∈

=
)()(,),(

)(
vPuPEvu

uvuext ω  

u

int(u) ext(u) 

 

Figure 9: Internal and External Cost 

Then, gain of moving a vertex u from its 
partition to the other is given by: 

g(u) = ext(u) - int(u) 

Now, based on this notion, we introduce the 
estimated gain for each uninstantiated variable and 
for each value in its domain. Given a partial 
instantiation, the set V of graph’s vertices is 
partitioned into two subsets: Vknown is set of vertices vi 
that the value of corresponding variable xi is already 
known (instantiated) and Vunknown=V \ Vknown. Let Di 
be the domain of variable xi, the temporary cut-edge 
set Ct is defined as follow: 

Ct= {(vi,vj)| (vi,vj)∈E, (Di≠Dj)∨(vi∈Vknown, vj∉Vknown)  

∨ (vj∈Vknown ,vi∉Vknown)} 

 
x1=1 

x2=1 

x3=2 x4={1,2} 
x5={1,2} 

x7={1,2} 

v1 v2 

v3 v4 
v5 

v6 

v7 

x6={1,2}  

Figure 10: Temporary Cut-Edges 

Informally speaking, for all edge (vi,vj): if the 
domains of corresponding variables xi and xj are 
different, we are sure that the edge belongs to the cut-
edge set; if one of xi and xj is instantiated, we 
consider the edge to be in the cut-edge set; in other 
cases, we ignore it. In Figure 10, Ct = {(v2,v3), (v1,v4), 
(v1,v5), (v2,v4), (v3,v4), (v3,v6)} 

We define estimated internal cost and estimated 
external cost for each vertex vi such that xi is not yet 
instantiated, and for each value val in its domain Di , 
as follow: 

int*(vi,val)={(vi,vj)| (vi,vj)∈E, xj=val} and 

ext*(vi,val)={(vi,vj)| (vi,vj)∈E, vj∉Vknown} 

The int*(vi,val) is the subset of Ct which 
become “internal” edges (and can be removed from 
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Ct) if vertex vi is put in partition Vval;  while the 
ext*(vi,val) is the set of new edges which will belong 
to Ct

. 

So, the estimated gain, if the variable xi is 
instantiated to val (vertex vi is in partition Vval) is: 

g*(xi,val)= �
∈ ),(int*),( valvvv

ij
iji

ω  - �
∈ ),(*),( valvextvv

ij
iji

ω  

For instance, in the previous example, g(x4,1)= 
(ω14+ ω24) – (ω45+ ω46);  g(x4,2)= ω34 – (ω45+ ω46) 

We use the following heuristic at each node of 
the search tree: the variable with maximal estimated 
gain is chosen. It is instantiated to the value leading 
to the largest estimated gain. 

   A Two-Phase Approach 
Although the above constraint programming 

formulation gives good results as reported in the next 
section, it can not find an optimal solution for large 
size instances.  

 

Initial Sectorization  
with RKL Heuristic 

Choose randomly a small subset of sectors 

Local Improvement with exact 
Constraint Programming Formulation 

END 

Yes 

No 

Improvements within the 
last N  iterations? 

 

 

Figure 11: A Two-phase Approach for Airspace 
Sectorization 

Therefore we propose in the following a two-
phase approach: firstly, we try to find a good 
solution, and then, we re-optimize it locally with our 
efficient CP algorithm. The behavior of our approach 
is illustrated in Figure 11.  

Finding an Initial Solution 
Given a huge airspace, which has to be 

partitioned into K sectors, we can not find directly an 
optimal solution. We must firstly find a good initial 
solution. This phase is performed by using recursive 
bisection schema.  

At each step of bisection, an initial solution can 
be found with the constraint-programming 
formulation (however, it is far from optimal yet) and 
then improved by using the idea of Kernighan/Lin 
(KL) heuristic. The KL heuristic is used to improve 
locally a solution of graph bisection. The algorithm 
takes as input an initial solution V=V1∪V2, and tries 
to find a sequence of node pair exchanges that leads 
to a better solution.  

Let g(u) and g(v) be the gains of nodes u∈V1 
and v∈V2 if we move them from their partition to  the 
other, and ωuv be the weight of edge (u,v). The gain 
of exchanging these nodes is: 

g(u,v) = g(u)+g(v)-2ωuv 

An iteration of the KL algorithm (called a pass) 
is as follows. 

procedure KLPass(V1,V2) : boolean { 

  Unmark and compute gain for all nodes; 

i:=1; 
Repeat { 

 Select ui∈V1, vi∈V2 such that g(ui,vi) is max; 
 Mark ui and vi; 

 Update gain for all unmarked nodes such 

 as ui, vi have been exchanged; 

  i++; 
} Until all nodes of V1 or V2 are marked; 

Choose j such that �
=

=
j

i

ii vugG
1

),(  is max; 

If (G>0) Then { 

Move u1..uj to V2,  v1..vj to V1; 

Return true; 

} Else   Return false; 

} 

In a KL pass, firstly we unmark and compute 
the gains for all nodes. We find an unmarked pair 
u∈V1, v∈V2 such that the gain g(u, v) of exchanging u 
and v is maximum (it may be negative). We mark u 
and v and update the gain values of all remaining 
unmarked nodes such as u and v have been 
exchanged. Repeat this procedure of pair selecting 
until all nodes in one of V1, V2 are marked. Now we 
have an ordered list of pairs (ui,vi), and we find the 

index j such that �
=

j

i

ii vug
1

),( is maximum. If this sum 

is positive, we perform the exchanges of j node pairs 
and the result of this pass can be taken as input of 
another pass. Otherwise, we end the algorithm. 

procedure KLBisection(Graph G=(V,E)){ 

Find an initial bisection V=V1∪V2; 
Repeat {changed := KLPass(V1,V2)} 

Until not(change)} 
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In the KL algorithm, the search of sequence of 
node pairs to be exchanged is performed for all nodes 
of graph. But the exchange of an arbitrary node pair 
could violate our ATC constraints. We propose so a 
Restricted Kernighan/Lin (RKL) heuristic for 
airspace bisection: at each step, we find a set of nodes 
such that their moves do not violate the ATC 
constraints; furthermore, the validity of each 
exchange is verified before it is performed. 
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Figure 12: Example for RKL Heuristic 
 

Consider the graph in Figure 12 for example, 
we have three flight plans: (1,2,3,4,5,6), (7,8,9,4,10) 
and (11,4,12,13). We can distinct two cases as 
follows: 

If all the nodes of a flight plan are in the same 
sector, as (11,4,12,13), it is easy to see that only its 
two extremities, 11 and 13 in this case, can be moved 
to other sector without violation of the convexity 
constraint and without violation of connectivity 
constraint if they are connected to the other sector by 
the edges of constrained triangulation. We put them 
in a set of “potential nodes”. The others must be put 
in a set “unchangeable nodes”. 

If the flight plan crosses the border of sectors, as 
(1,2,3,4,5,6) and (7,8,9,4,10), only two extremities of 
the cut edge can be exchanged and then can be put in 
the potential nodes set (but note that these two nodes 
can not be exchanged directly). We have three nodes 
3, 4 and 9 for the case. 

So, we find a pair to be exchanged only among 
the potential nodes, but which are not unchangeable. 

Because of minimum sector crossing time and 
minimum distance constraints, some vertices must be 
in the same sector. To meet these constraints, we 
introduce the notion of cluster of exchange: if v1, v2 ... 
vq must be in the same sector, we call them a cluster. 
Naturally, vertices of a cluster must be moved all at 
once and, if one of them is unchangeable, so is the 
cluster. 

At last, the balance constraint must be verified 
before each exchange. 

Random Local Re-optimization 
To improve the solution obtained in the 

previous step, we propose a random local re-
optimization scheme as follows. We repeat to choose 
randomly a group of adjacent sectors and use the 
constraint- programming formulation to find its 
optimal solution. The procedure is stopped if after 
predefined N consecutive iterations, the solution is 
not longer improved. 

Experimental Results 
The constraint-based model has been implemented 

with the constraint programming library CHOCO 
[33] on top of CLAIRE [34]. All programs have been 
run on a PC Athlon 2000+, 512MB RAM, under 
Windows XP. For our experimental study, we have 
generated several classes of graphs; each class 
containing 50 problem instances with the same 
number of vertices. At first, some vertices 
representing airports are generated, the coordinates 
are uniformly distributed. An edge between two 
vertices means that there is at least a flight joining 
these airports. The probability of existence of edge 
between two vertices is uniform and number of 
flights passing this edge is also from uniform 
distribution n∈[1,200]. And then we calculate all 
crossing points of graph and consider them as 
vertices. The graph is taken if it has a desired number 
of vertices. 

Table 1 and Figure 13 report the results 
obtained when we try to find the optimal solution of 
the bisection problem  (k=2). In this table, Avg Bk 
and Avg CPU are respectively the average number of 
backtracks performed and required CPU time to solve 
an instance. %<4min is percentage of instances 
which can be solved within 4 minutes. In these 
results, it is clear that, as far as bisection is 
concerned, the model is applicable for up to 80 
vertices instances, with a reasonable execution time.  

Table 1: Experimental Results of Finding Optimal 
Solutions 

Instance 
size Avg Bk Avg CPU(ms) %< 4min 

30 480 268 100 
40 1278 1009 100 
50 3472 3586 100 
60 7173 10667 100 
70 17232 30925 100 
80 28986 71342 78 
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Figure 13: Average Bk and CPU Time for an 
Optimal Bisection 

Table 2: Experimental Results of Finding First 
Solution and Re-Optimization 

Class 

Avg 
first 

CutSize 

Avg 
re-optimized 

Cutsize 

Avg total 
CPU 
(ms) 

Avg % 
reduction 

60/4 3203 2124 4107 34% 

70/5 4157 2847 4818 32% 

80/6 5161 3469 6192 33% 

90/7 6043 4321 5503 28% 

100/8 6884 4957 6363 28% 

200/16 15349 11728 19196 24% 

500/40 41217 34028 203912 17% 
 

 

Figure 14: A 100-Vertices Graph Sectorized Into 8 

Table 2 reports the performance of the re-
optimization phase and the execution time to partition 
60 vertices into 4 sectors, 70 vertices into 5 sectors, 
…, and 500 vertices into 40 sectors. Avg first 

CutSize and Avg re-optimized CutSize are 
respectively the average cutsize of the first solution 
and the average cutsize of the solution re-optimized. 
Avg total CPU is the average total execution time (to 
find a first solution and to re-optimize it) 

Conclusion 
In this paper, we have proposed a constraint 

programming formulation to optimize the 
sectorization that satisfies all the specific constraints. 
Based on the notion of gain of Kernighan/Lin 
heuristic for Graph Partitioning, we have defined a 
heuristic for variables and values ordering while 
searching solutions. A Restricted Kernighan/Lin 
heuristic is also proposed to improve the initial 
solution of bisection. This formulation can find 
optimal solution for small size instances of the 
problem. For larger instances, we use a two-step 
approach: find an initial solution and then re-optimize 
it locally. 

This model is implemented and experimented 
with some randomized data. The initial results are 
promising, a 500-vertices graph can be sectorized 
into 40 sectors within 4 minutes. The study is 
pursued to improve and extend the model. One of 
next extensions is to take into account the flight 
levels to separate a “heavy” network node to several 
sub-nodes.  

Keywords: Airspace Sectorization, Constraint 
Programming, Graph Partitioning 
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