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Abstract 
Delay propagation is a well-known phenomenon within the global air transportation system.  Specifically, 

because of equipment and crew connectivity, a flight delayed early in the day can induce delays to multiple 

flights later in the day.  In this paper we investigate this phenomenon by developing a statistical model that 

predicts the average flight delay after a given breakpoint time b, based on the average delay before b.  We then 

vary b and are able to quantify the extent of delay propagation and understand its temporal evolution.  We 

estimate this model for several U. S. airports and are able to compare these airports with respect to their delay 

propagation characteristics.  

 

Introduction 
At any congested airport, it is extremely 

important to understand how flight delays 

propagate over the course of the day, particularly 

when considering new policies or expansions that 

might have a significant affect on demand or 

capacity.  For example, at some airports, a surge in 

demand or a capacity shortfall early in the day can 

be absorbed because of traditionally low usage 

during the early afternoon.  At other airports that 

are more uniformly congested, early congestion can 

be devastating, because there is no recovery period. 

It is well-known in the study of queues that 

for over-saturated systems, the “marginal price” of 

a unit of delay early in the day is much higher than 

it would be if that same delay were to occur later in 

the day.  This is easily illustrated in deterministic 

systems, but is also generally true for (more 

realistic) stochastic systems.  

At an airport served primarily by a small 

number of major carriers, such as Chicago’s 

O’Hare International Airport, this can have 

implications at the individual carrier level, since 

each carrier is a significant contributor to the 

overall traffic.  In these circumstances, a carrier 

might choose to make long-term strategic 

scheduling decisions such as spreading the demand 

over the day to avoid peaks that create congestion 

in the first place, or to purposefully leave vacant 

some “slots” in the afternoon as a buffer to allow 

for system recovery in the event of earlier delays.  

The tactical decision to cancel flights could also be 

affected – an early flight that is not very full, is not 

critical to network connectivity, and whose 

passengers can be otherwise accommodated, might 

be more likely to be cancelled if its acceptance ran 

a higher risk of tipping the balance of delays for the 

rest of the day. 

At other airports with a more diverse set of 

servicing carriers, individual decisions such as 

those described above are not likely, due to the 

“tragedy of the commons” – it is not in anyone’s 

best interest to unilaterally reduce their impact, as 

their competitors may benefit as well.  The airports 

themselves, however, also have an interest in 

reducing delays, both for customer satisfaction as 

well as safety concerns.  They might choose to 

adopt policies regarding the numerical values of 

airport acceptance rates (AARs) over the course of 

the day similar to the scheduling patterns described 

above.  In particular, at high density airports where 

some form of slot control exists or is planned, these 

policies might be explicitly incorporated into the 

slot offering and exchange mechanism. 

It is the intent of this paper, therefore, to take 

a careful look at empirical delay data from a variety 

of airports to try to understand some aspects of 

delay propagation at an individual airport.  The 

central question is the following: at time t, given 

that some accrued delay equal to d has already 

occurred, what is the expected pattern of delays for 

the remainder of the delay?  Such a question can be 

made more specific – for example, one might 

determine, for a given airport, what amount of 

delay represents the threshold at which a risk-based 
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policy for congestion management might be 

invoked, for example a congestion-induced ground 

delay program (GDP). 

We hypothesize that airports differ in 

important ways with regard to their delay 

propagation patterns, due perhaps to structural 

differences in their configurations, in the network 

traffic that they serve, in prevailing weather 

conditions that routinely affect capacity, etc.  Time 

and distance factors can also be important – for 

example, some airports, like Los Angeles 

International Airport, serve large volumes of trans-

oceanic traffic.  Some airports, like Washington 

DC’s Reagan National Airport and New York’s 

LaGuardia Airport, are governed by explicit 

restrictions on the geographic distribution of the 

flights they serve. 

The nature of our study, therefore, is largely 

empirical.  We do not develop prediction models, 

but rather employ simple statistical models as tools 

for data mining.  Our choices of models (i.e. data 

extraction and processing algorithms) are defended 

on two basic principles: a) they are simple, and b) 

they produce interesting results that highlight 

important characteristics at the airports in question, 

and that can be convincingly related to the causal 

factors described above. 

In the next section, we describe how our study 

fits in the context of the larger body of literature on 

delay propagation at airports.  Following that are 

two sections on data preparation and modeling, 

respectively.  We then present a series of case 

studies at individual airports, and the paper ends 

with conclusions and recommendations for 

additional investigations. 

 

Background 
In this paper, we describe an approach to 

analyzing the relationship between delays earlier in 

the day with those that occur later in the day.  

Obviously, the nature of this relationship will 

change as the day progresses.  The concept of delay 

propagation is very general and can be considered 

in many different scopes and frameworks.  The 

methodology most appropriate for such an analysis 

is strongly dependent on the scope of the analysis 

being undertaken. 

An important distinction to make is between 

models that analyze historical data to identify 

information about delay propagation that occurred, 

and those models that attempt to predict changes in 

delay propagation based on some information.  The 

two can have markedly different applications, and, 

in particular, data from the first type can be used to 

improve models of the second type. 

The approach taken in this paper is to fix a 

time threshold, and, given the arrival delay that 

accumulated before that time, examine the 

conditional distribution of arrival delay for the 

remainder of that day, using a year’s worth of data.  

By varying the time threshold, one can start to 

pinpoint what parts of the day are critical in the 

evolution of delays, although we expect this to vary 

significantly by airport.  This approach is fairly 

general, and can be used to examine the ability of 

an individual airport to recover from irregular 

operations.  It includes, intrinsically, effects relating 

to the airport’s physical configuration and climactic 

conditions.  In addition, the scheduling and 

operational practices of all the carriers using that 

airport are incorporated.  Thus, when comparing 

analyses from different years, if the significant 

carriers have changed their operations, the results of 

the analysis will also change.   

A different approach is to examine the 

propagation of individual delays throughout a larger 

network of airports.  This exercise can be useful in 

predicting the effects of a single delay on later 

operations at connected airports.  Because of the 

size and complexity of such a model, different 

statistical and computational techniques are needed 

for analysis [1][2].  A model like this takes the 

stance that delay propagation between airports is 

inherently a system problem, and as such requires 

network oriented statistical techniques.  Because of 

its structure, it is primarily oriented at capturing 

interactions between individual airports.  

A third potential approach to this sort of 

analysis is to examine the propagation of delays for 

an individual carrier.  Because an individual 

carrier’s aircraft are likely scheduled to be used 

heavily all day long, an early delay should have a 

greater impact than a later one.  However, the 

strength of the impact can vary strongly with the 

carrier’s network structure and scheduling 

practices.   A detailed analysis of this nature, using 

real information about route structure and 

connectivity of operating resources was conducted 

at American Airlines [3] using proprietary software.  

This study identified a “delay multiplier,” which the 

authors defined as the relative value of earlier 

delays, in terms of induced later delay, as a function 

of length of initial delay and time of occurrence.  A 

similar result (using a different methodology) will 

be identified in this paper for an airport-level, rather 

than carrier-level, delay propagation effect.   

A different approach that has been undertaken 

by some researchers is to analyze data about 

individual flights recursively to identify 

controllable and non-controllable factors on delay 

propagation [4].  This study traced individual 

aircraft on all their flights through the National 

Airspace System (NAS), and removed the effects of 
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earlier delays on later flights.  Thus, the amounts 

and causes of individual delays could be aggregated 

across many flights.  As it relates to this study, the 

amount of delay propagated from one flight to 

another on an individual aircraft could be readily 

identified, and, using this data, information about 

the patterns of delay propagation could be 

identified. 

Considerable work has been done recently on 

the nature and effects of delay propagation, as it 

relates to the NAS, and individual carriers, in 

particular.  However, there still remains room for 

considerable analysis of the unique nature of delay 

propagation effects at individual airports.  In the 

next section, we will describe the data and the 

careful preparation used in this analysis. 

 

Data Information 
As described, this analysis uses historical data 

to examine the relationship between delay before 

and after some breakpoint in time.  While there are 

many possible ways to examine the “amount” of 

delay that took place before or after the breakpoint, 

we have chosen to examine the average arrival 

delay per flight at a given airport.  An alternative 

might be cumulative minutes of delay (i.e., total 

delay) but this quantity is confounded with the 

number of flights represented in the sum and the 

amount of time over which it was aggregated.  

These effects are particularly egregious at the 

beginning and end of a day. 

At some airport a, a given day d may be 

partitioned into any number of time periods.  We 

index these time periods by { }1,...,t T∈ , and 

assume that they are of equal length.  Then, for 

each time period t, many statistics about airport 

operations can be computed by binning individual 

flight records by their arrival times.  The count of 

flights that arrived during time period t on day d at 

airport a is defined as , ,t d aC . 

Now, consider arrival delays.  In this paper, 

we will consider arrival delays relative to the 

schedules that airlines publish in the Official 

Airline Guide (OAG).  Then, the average arrival 

delay per flight , ,t d aD  during some time period t is 

the sum, over all flights arriving during that period, 

of the differences between the actual arrival time 

(during time period t) and the scheduled arrival 

time (not necessarily during time period t), divided 

by the total number of flights which arrived during 

that time period, , ,t d aC .  Basically, when assigning 

the delay of an individual flight to a time bin, one 

has to choose whether to assign it according to 

either its scheduled arrival time or its actual arrival 

time, and in this case we have chosen the latter, 

mostly because this choice is most consistent with 

the standard sources of data for flight delays.  

One small technicality has to be dealt with 

concerning congested periods that traverse 

midnight, and hence overlay two consecutive days.  

Since, in this paper, we are trying to examine the 

relationship between delay earlier in a day and 

delay later in a day, we must exclude delay that 

happens shortly after midnight.  That delay, while 

technically occurring on day d, is actually related 

to, and should be considered with, day 1d − .  As 

such, a day, in the context of this paper, refers to 

the time period between 0400 local time on day d 

and 0400 local time on day 1d + .  The index d 

refers to the calendar day during which the majority 

of the time periods take place.   As an example, in 

the context of this paper, the data for January 2 

would exclude data between 0000-0400 local time 

on January 2, but would include data from 0000-

0400 local time on January 3.  However, January 2 

would still be indexed as 2d = , despite the 

inclusion of data from the subsequent day. 

The data for this paper was drawn from the 

Aviation System Performance Metrics (ASPM) 

database, which is maintained by the Federal 

Aviation Administration (FAA).  The quarter hour 

Airport Analysis databases were used.  If for any 

reason the reliability of this aggregate data were to 

be questioned or if a different set of reporting 

airports were required, individual flight records 

could be used to reproduce the data.  

Because we are comparing delay data 

aggregated before a given time breakpoint with 

similar data aggregated afterward, we must 

carefully define which data are included in our 

definitions of prior and post breakpoint time in 

order to facilitate a meaningful analysis.  The prior 

delay 
, , ,tprior d b a

D  is the average delay experienced 

by each flight that arrived to airport a between the 

beginning of the day (0400 local) and the end of 

time period b on day d.  That is, given time-varying 

sequences of average arrival delays { }, ,t d aD  and 

airport arrival counts { }, ,t d aC  over some day d, the 

prior delay is calculated as the weighted mean of 

average arrival delays, as shown in (1). 
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The post delay , , ,post d b aD  is defined in a 

manner similar to prior delay: the average delay 

experienced by each flight which arrived during 
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time period 1b + or greater, but before the final 

time period T (which ends at 0400 local), of day d.  

This is shown in (2). 
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The prior and post arrival delays are 

calculated for each possible combination of 

breakpoint time b and day d, for a given airport a 

over some longer time period (for example, the 

course of one year).  Until this point, the procedure 

described thus far is simply an aggregation of 

historical data. 

As an example, consider January 7, 2005 at 

Los Angeles International Airport (LAX).  Shown 

in Figure 1 is the information described previously, 

for the case 10b = .  The bars are the average 

arrival delays accounted for in each quarter hour.  

The darker bars are those assigned before the 

breakpoint time (1000 local), and the lighter ones 

are those that occur afterwards.  The black curve is 

the quarter-hourly count of arrivals, which is used 

here as the weighting function for the delays. 
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Figure 1 - Sample arrival delay/count 

information 

The information shown in Figure 1 is 

processed as described and the result, for the 

selected day (January 7, 2005), breakpoint (1000 

local), and airport (LAX), is shown in Figure 2. 

 While it may seem that a significant amount 

of fidelity has been lost in the procedure (i.e., the 

transition from Figure 1 to Figure 2), several things 

must be remembered.  First, this procedure will be 

repeated for each possible breakpoint time b on a 

given day.  As such, some semblance of the profile 

shape of the delay and arrival count throughout the 

day is retained.   Second, this is not an effort 

focused on a micro-scale analysis of every variation 

in flight delay.  We are seeking to identify and 

explain trends and patterns only in the propagation 

of delay at a single airport. 
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Figure 2 - Prior and post breakpoint time arrival 

delays for b = 10 

 

Modeling Approach 
Figure 3 shows a scatterplot of 365 data points 

for the prior and post delays at San Francisco 

International Airport for the year 2005, with a 

breakpoint time of 10b = .  The horizontal axis 

shows the average prior delay, while the vertical 

axis shows the average post delay.  For a different 

breakpoint time, later in the day, one would expect 

a distribution of prior delays that included larger 

values, and perhaps the extreme values of the post 

delay would become correspondingly smaller.  For 

each value of the prior delay, one could imagine 

taking a vertical slice through the figure, and the set 

of post delays represents the conditional 

distribution of post delay, given the value of the 

prior delay. 
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Figure 3 - Scatter plot for SFO in 2005 for b = 10 

Importantly, Figure 3 shows a definite 

increasing trend in post delays as the prior delay 

grows.  This makes perfect qualitative sense for a 

congested airport: the worse things are earlier, the 

greater the deleterious impact that will have on 

congestion later in the day.  Of course, there comes 

a time when this trend is not retained, specifically at 
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the end of the day when the demand subsides and 

delays decrease strictly because of the scarcity of 

demand, as will be observed later. 

We use a simple linear regression model to 

capture this increasing trend.  More complicated 

models could be proposed, but for now, very 

interesting results seem to come from even this 

simple choice.  More specifically, for a fixed 

breakpoint time b and airport a, with the post and 

prior delays varying between days, we estimate the 

linear regression model shown in (3) using the 

ordinary least squares (OLS) method.   

 , , , , , , , , , ,post d b a b a b a prior d b a d b aD Dα β ε= + +  (3) 

The index for observations is the day d.  The 

parameter ,b aα  will be referred to as the model 

intercept, and this can be interpreted as some form 

of “background delay,” since it represents delays 

whose existence and magnitude is independent of 

the changes in prior delay.  The coefficient ,b aβ  is 

referred to as the model slope, and it is very similar 

to the “delay multiplier” described in the American 

Airlines study [3], in the sense that it represents the 

expected marginal contribution to later average 

delays by a unit increase in average delay earlier in 

the day.  Each of these model parameters is 

conditioned on a given breakpoint time period b  

and airport a.  Typical assumptions are used about 

the error term , ,d b aε . 

This model is estimated for each possible 

breakpoint time b at a given airport a.  The 

resulting model intercepts and slopes create 

sequences of slope and intercept values: { },b aα  and 

{ },b aβ , respectively.  Another possible sequence of 

interest for examination after estimating the model 

for each breakpoint time is that of the coefficient of 

determination, 2
R .  As this is a single variable 

regression model, the resulting sequence { }2

,b aR  

can be used to examine the strength of the 

correlation between the dependent and independent 

variables.  Each of these sequences is of length T.  

 

Airport Case Studies 
In this section, we present results for several 

airports in the United States with interesting delay 

propagation effects, and make comparisons 

between the results for each. 

LGA: La Guardia Airport 

At New York’s LaGuardia Airport, scheduled 

operations regularly exceed the best nominal airport 

acceptance rate.  The precariousness of the demand 

to capacity ratio was made quite evident when 

increases in demand were allowed under the “AIR-

21” legislation and extreme delays resulted [5].  As 

such, even in good weather conditions, serious 

delays are often observed.  This high level of 

scheduled operations is shown in Figure 4. 
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Figure 4 - Average scheduled hourly arrivals at 

LGA for 2005 

Intuitively, one would theorize that such a 

uniformly high level of scheduled operations should 

exact a very severe penalty for early delays.  In 

addition, because LGA is served by many carriers, 

and is not used as a network hub, the phenomenon 

described previously in which carriers may be more 

reluctant to make schedule adjustments may 

manifest itself.  As shown in Figure 5, this is in fact 

the case.  The model slope, or the cost of early 

arrival delays in terms of later ones, rises quickly 

and stays above 1.0 for much of the day.  The value 

of 1.0 is important, since periods for which this is 

true exhibit non-linear impacts to later delays from 

earlier delays.  The airport does not have a slack 

period in the schedule during the interior of the 

operating day during which to recover from these 

early delays.  Thus, the only recovery period is late 

at night after the scheduled demands have been 

exhausted. 
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Figure 5 - LGA slope curves 
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Another characteristic evident in the results 

for LGA is a spike that occurs between 10pm and 

midnight in the intercept curves, as shown in Figure 

6.  Intuitively, this spike seems strange, since traffic 

at that hour at LGA is extremely limited, and the 

airport should be able to rapidly recover from 

delays.  In fact, the phenomenon being observed is 

the fact that the airport has a scheduling curfew at 

the end of the day, and so, any traffic arriving after 

that hour is, by definition, delayed.  This 

phenomenon will also be observed for DCA.  Both 

airports have scheduling curfews for the obvious 

reason that they are both slot-controlled. 
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Figure 6 - LGA intercept curves 

ORD: O’Hare International Airport 

As with New York’s LaGuardia Airport, 

Chicago’s O’Hare International Airport is highly 

congested, and often experiences significant levels 

of delay.  Like LGA, it is scheduled very fully, as 

shown in Figure 7. 
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Figure 7 - Average scheduled hourly arrivals at 

ORD for 2005 

Unlike LGA, ORD is used as a hub for two 

major carriers, potentially resulting in different 

schedule adjustment decisions during irregular 

operations.  Because ORD is regularly scheduled at, 

or beyond, its nominal capacity, there exist no 

interior periods during which accrued delays can 

dissipate.  This is similar to the phenomenon 

observed at LGA, and is shown in Figure 8.  The 

reduction during 2006 is most likely explained by 

the negotiated schedule reductions that took place 

over the prior two years, and also the demise of 

Independence Air. 
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Figure 8 - ORD slope curves 

It is reassuring to examine the plot of the 

sequence of 2
R  values at ORD.  Intuitively, one 

would theorize that this graph should rise fairly 

linearly, since, as the day progresses, more 

information about the delay pattern is emerging, 

and the predictions of later delays should become 

more and more accurate.  As shown in Figure 9, 

this is true for this particular case study.  However, 

as discussed later, this is not always the case in 

other situations.  In Figure 9, as in all plots of 2R  

values, the curves drop sharply at the end of the 

day, because the fall-off in schedule means that 

later delays will inevitably fall to zero, regardless of 

what happened earlier in the day. 
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Figure 9 - ORD R
2
 curves 
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ATL: Hartsfield-Jackson International 

Airport 

The results for Atlanta’s Hartsfield-Jackson 

International Airport (ATL) are remarkably similar 

to those for ORD.  This result might be expected, 

since the two airports have many similarities.  They 

are both very large, very congested, and have 

extensive hubbing operations for major carriers.  

The average schedule for 2005 is shown in Figure 

10. 
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Figure 10 - Average scheduled hourly arrivals at 

ATL for 2005 

The slope curves shown in Figure 11 for ATL 

look very similar to those that were shown in 

Figure 5 for ORD.  They quickly rise above 1.0 and 

stay there until evening time, at which time they 

drop off very far.  It is logically consistent that the 

slope curves should drop off at the end of the day, 

given the smaller number of operations occurring at 

those hours.  More importantly, however, as 

evidenced by the 2
R  plots late in the day, the 

regression model form simply isn’t appropriate late 

in the day, since the driving force is the vanishing 

of scheduled demand. 
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Figure 11 - ATL slope curves 

The R
2
 curves for ATL shown in Figure 12 

look remarkably similar to those shown in Figure 9 

for ORD.  They tend to rise steadily and nearly 

linearly to a fairly high peak where the correlation 

between earlier and later delays is highest.  This 

suggests that delays at large hub airports, such as 

ATL and ORD, are somewhat easier to predict than 

those for smaller airports, at least for those periods 

in the meaty part of the schedule when plenty of 

earlier flights have been able to generate delays, 

and sufficient later flights remain to suffer the 

consequences thereof.  This view is consistent with 

the idea previously discussed that the presence of 

one (or a small number of) large carriers 

dominating an airport tends to make the operations 

there more predictable. 
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Figure 12 - ATL R
2
 curves 

LAX: Los Angeles International Airport 

LAX is an interesting airport for analysis 

because it is a very busy one (as illustrated in 

Figure 13), but it is not a hub for any of the legacy 

carriers.  In addition, it accommodates significant 

numbers of long-distance international flights, 

which may result in different operating paradigms.   
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Figure 13 - Average scheduled hourly arrivals at 

LAX for 2005 

The plots of 2R  values for the successive 

breakpoint models at ORD matched intuition.  

However, at LAX, they take a different shape.  As 

shown in Figure 14, the curves tend to rise to a 

peak, and then remain flat at, or near, the same 

value.  While this behavior is not immediately 
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explicable, it may be important when managing 

irregular operations at LAX to know that one’s 

ability to predict later delays peaks in the morning 

and does not markedly improve as the day 

progresses.  In any event, the 2
R  values during this 

period are relatively good, at least from the 

perspective of delay forecasting in the aviation 

domain. 
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Figure 14 - LAX R
2
 curves 

The slope curves for LAX are also interesting 

to examine.  They are shown in Figure 15.  They 

tend to rise less quickly than those for the major 

hub airports (ORD, ATL) discussed previously.  

The curves still exceed 1.0 and remain there for 

much of the day.  The likely explanation for this 

slower and later rise in the morning hours is that 

LAX does not have the same tight scheduling 

pressure as do the hub airports.  The greater slack in 

the schedule prevents delays from propagating as 

strongly. 
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Figure 15 - LAX slope curves 

 

 

 

 

DCA: Ronald Reagan Washington 

National Airport 

Washington DC’s DCA is another small and 

highly constrained airport, like LGA.  Its average 

hourly schedule for 2005 is shown in Figure 16. 
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Figure 16 - Average scheduled hourly arrivals at 

DCA for 2005 

As mentioned for LGA, airports of this type 

with evening curfews tend to show a spike in the 

intercept curves late in the evening.  This 

phenomenon is seen again for DCA in Figure 17.  

Because flights arriving at these late hours are, by 

definition of the curfew, guaranteed to be late, the 

largest contribution to their delay comes not from 

the delays that occurred earlier in the day, but 

solely from the fact that they are arriving, even if 

only a few minutes, past the curfew time. 
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Figure 17 - DCA intercept curves 
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SFO: San Francisco International 

Airport 

SFO is not scheduled as fully as some of the 

other airports discussed here, as can be seen in the 

average schedule shown in Figure 18.  On the other 

hand, SFO regularly experiences IMC conditions 

and the IMC arrival capacity is roughly half of the 

VMC capacity. 
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Figure 18 - Average scheduled hourly arrivals at 

SFO for 2005 

IMC capacity is most common during the 

morning hours due to the presence of marine stratus 

conditions.  As a result, morning delays resulting 

from severely decreased arrival capacity are 

extremely common.  The peak in the slope curve in 

Figure 19 roughly corresponds to the earlier 

demand peak, i.e. around 1000 local time.  At this 

time there is high demand but it is less likely that 

the marine stratus has burned off.  While there is 

also high demand around 1200, at this time it is 

more likely that the airport is back to VMC 

capacity.  Thus, the slope is lower.   
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Figure 19 - SFO slope curves 

 

 

Conclusions 
This paper has introduced a simple statistical 

tool for manipulating historical delay information at 

individual airports to investigate various aspects of 

the dynamics of delay propagation over the course 

of a day.  The intent is not to use the tool as any 

kind of predictive model, but rather to gain insights 

into the process of delay propagation, and in 

particular to compare across different airports, with 

very different operating paradigms, to see what 

structural effects from those airports manifest 

themselves in the observed patterns of delay 

propagation. 

Three primary statistics can be plotted over 

the course of a day for an airport: the intercept 

coefficient, which represents in some sense the 

quantity of delays that are caused by reasons other 

than propagation of earlier delays; the slope 

coefficient, which represents the marginal rate at 

which later average delays result from earlier 

delays, and the 2
R  goodness-of-fit-statistic, which 

represents the quality of the relation between earlier 

and later delays. 

The slope coefficient is very similar to, but 

smaller than, the American Airlines notion of 

“delay multiplier.”  Since the slope coefficient is 

applied at the airport level and the delay multiplier 

for an individual carrier, it is likely that the slope 

coefficient is smaller since airports (even 

overscheduled ones) have more slack than do 

carrier schedules.  Airports have degrees of 

freedom, particularly when they are served by 

multiple carriers, but carrier schedules are strongly 

constrained by the concerns of connecting flights 

and maximizing the utilization of aircraft. 

The 2
R  profiles uniformly decline sharply at 

the end of the day, simply because exhaustion of 

the schedule implies that accrued delays will 

inevitably be absorbed, regardless of their 

magnitude.  This decline can be observed very 

sharply at slot-controlled airports or other airports 

with scheduling curfews.  In any event, once this 

trend has begun, the values of the slope and 

intercept coefficients for corresponding time 

periods at the same airport are obviously unreliable, 

but this is nearly moot since delay propagation is 

not a concern at the end of the day. 

This paper contributes a number of small 

insights into the temporal dynamics of delay 

propagation at airports.  Importantly, the methods 

are simple, but nonetheless produce outputs that are 

rich in detail and whose patterns can be tied 

explicitly to important aspects of the operating 

paradigms at the airports.  This is an important 

contribution because it helps understand the role of 
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these policy decisions in the evolution of delays at 

an airport. 

Another contribution is the fact that the 2R  

profiles show the strength of correlations between 

early and late delays across the course of the day.  

While this paper is not concerned with estimating 

delays and their propagation, certainly many other 

papers are, and this helps provide insight as to when 

and where those efforts are most likely to be of high 

statistical quality. 

Finally, a small point is that the plots reinforce 

the fact that early delays have a higher marginal 

deleterious effect on later performance at the 

airport.  This has been cited in numerous places 

before, and is strongly supported by theory.  It is 

important to be reminded of this fact, however, to 

encourage scheduling strategies and operating 

policies at the airport that are sensitive to the 

intricacies of queuing system delays, that hedge 

properly against periods of poor performance.  It 

may also be politically expedient to remember this 

fact if it is necessary to introduce policies at 

congested airports, such as strict slot controls, that 

mitigate against this effect in ways that might seem 

counter-intuitive to the uninitiated, such as 

providing explicit slack periods for delay recovery. 
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