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Abstract—In addition to the increasing passenger demand, airline 

frequency competition is another reason for the growing demand 

for airport resources. By providing more flight frequency, an 

airline attracts more passengers. As a result, demand for flight 

operations often exceeds capacity at congested airports, resulting 

in delays and disruptions. At some congested airports, the limited 

airport capacity is allocated between different airlines using 

administrative slot controls.  At a slot controlled airport, (a) the 

total number of allocated slots, and (b) the distribution of slots 

across different airlines, together determine the effectiveness of 

any slot control strategy. We propose a game-theoretic model of 

airline frequency competition under administrative slot controls. 

The model is based on the popular S-shaped relationship between 

market share and frequency share of an airline. The model is 

solved for a Nash equilibrium and the model predictions are 

validated against actual frequency data, with the results 

indicating a good fit. We describe two different schemes for 

distributing the available slots among different airlines. We 

evaluate the impact of varying the total number of allocated slots 

on the airlines and the passengers. The results from a case-study 

at the New York LaGuardia (LGA) airport suggest that a small 

reduction in the total number of allocated slots translates into a 

substantial reduction in flight and passenger delays, and a 

considerable improvement in airlines’ profits. 
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I. INTRODUCTION 

Growing congestion at major US airports leads to several 
billion dollars of delay costs each year. Total flight delays rose 
sharply during much of the early 2000s. Although the current 
economic recession has led to airline schedule reductions and 
consequently resulted in delay reduction over the last couple of 
years, large delays are expected to return as soon as the 
economic crisis subsides [1]. Aircraft delays result in passenger 
delays and discomfort, as well as additional fuel consumption 
and green house gas emissions. Various studies have estimated 
the total economic impacts of delays. For the calendar year 
2007, which was the last full year of peak air travel demand 
before the economic downturn, the total cost of U.S. air 
transportation delays was estimated at $33.2 billion [2]. The 
magnitude of these delays can be properly grasped by noting 
that during the same year, the aggregate profits of US domestic 
airlines were $5.0 billion [3]. 

A. Demand-Capacity Mismatch 

According to the Bureau of Transportation Statistics (BTS), 
around 50% of the delayed flights during the year 2007 were 
categorized as flights delayed due to the National Aviation 
System (NAS) [4]. Weather and volume were the top two 
causes of NAS delays. Delays due to volume are those caused 
due to scheduling more airport operations than the available 
capacity, while the delays due to weather are those caused by 
airport capacity reductions under adverse weather conditions. 
Both these types of delays are due to scheduling more 
operations than the realized capacity. Such mismatches 
between demand and capacity are a primary cause of flight 
delays in the United States. 

Increasing capacity and decreasing demand are the two 
natural ways of bringing the demand-capacity mismatch into 
balance. Capacity enhancement measures such as building new 
airports, construction of new runways, etc. are investment 
intensive, require long-time horizons, and might not be feasible 
in many cases due to geographic, environmental, socio-
economic and political issues associated with such large 
projects. On the other hand, demand management strategies 
have the potential to restore the demand-capacity balance over 
a medium- to short-time horizon with comparatively little 
investment. Demand management strategies refer to any 
administrative or economic policies and regulations that restrict 
airport access to users. All the demand management strategies 
proposed in the literature and practiced in reality can be 
broadly categorized as administrative controls and market-
based mechanisms, although various hybrid schemes have also 
been proposed. This paper focuses specifically on 
administrative slot control strategies. 

B. Administrative Slot Controls 

Over the recent years, some of the most congested airports 
in the United States, including LaGuardia, John F. Kennedy, 
and Newark airports in the New York region, Reagan airport at 
Washington D.C., and O’Hare airport at Chicago have had 
some form of administrative controls limiting the number of 
flight operations. Outside of the US, administrative controls are 
commonplace at busy airports. Several major airports in 
Europe and Asia are 'schedule-coordinated', where a central 
coordinator allocates the airport slots to airlines based on a set 
of pre-determined rules. Under the current practices, both in 
and outside of the US, the available slots are allocated among 
different carriers according to criteria based on historical 



precedents and use-it-or-lose-it rules. Under these rules, an 
airline is entitled to retain a slot that was allocated to it in the 
previous year, contingent on the fact that the slot was utilized 
for at least a certain minimum fraction of time over the 
previous year. An airline failing to utilize a slot frequently 
enough, however, is in danger of losing it. 

Implicit in the current approach for setting the slot controls 
is the need to make a tradeoff between delays and resource 
utilization. Specifically, it requires ascertaining the 'declared' 
capacity of an airport beforehand even though the actual 
capacity on the day of operations is a function of prevalent 
weather conditions. Declaring too large a value for capacity 
poses the danger of large delays under bad weather situations 
and declaring too low a value leads to wastage of resources 
under good weather conditions. Declared capacity, that is, the 
total number of slots to be allocated per time period, greatly 
affects the congestion and delays at an airport. 

In order to determine the most appropriate value of declared 
capacity, it is very important to distinguish between the 
demand for airport capacity in terms of the number of flight 
operations and the passenger demand for air travel in terms of 
number of enplanements. It is the former that affects the airport 
congestion most directly. Table I shows the values of total 
number of passengers, total number of flights and total arrival 
delays to flights in the US. All the values in Table I are 
normalized such that the values for the year 2000 are all equal 
to 100. Passenger demand dipped in the first two years of this 
decade following the economic recession and the 9/11 attacks. 
However, the period from 2002 to 2007 saw a sustained growth 
in passenger demand. By 2007, the passenger demand was 
13.28% higher compared to that in 2000. However, the number 
of scheduled flight operations was 24.46% higher and total 
arrival delays to flights were 38.58% higher. 

Such disproportionate rise in number of flight operations 
compared to a relatively moderate increase in number of 
passengers meant that the average number of passengers per 
flight reduced by around 9% from 2000 to 2007.  This suggests 
that there is more to the demand-capacity mismatch than 
simply the rate of passenger growth outpacing the rate of 
airport capacity expansion. By providing more frequency of 
flights, an airline attracts more passengers. Frequency 
competition between carriers is considered partially responsible 
for exacerbating the demand-capacity mismatch and therefore 
the congestion problem. 

In this paper, we model airline frequency decisions under 
competition and evaluate the impact of two strategic 
administrative slot control schemes on various performance 
metrics from the viewpoints of airlines and passengers. 

II. BACKGROUND 

Frequency planning is that part of the airline schedule 
development process which involves decisions about the 
number of flights to be operated on each route. Given an 
estimate of total demand on a route, the market share of each 
airline depends on its own frequency as well as on the 
competitor frequency. Market share can be modeled according 
to the so-called S-curve or sigmoidal relationship between the 
market share and frequency share, which is a widely accepted 

notion in the airline industry ([5], [6]). Empirical evidence of 
the relationship was documented in some early studies and 
regression analysis was used to estimate the model parameters 
([7], [8], [9]). Over the years, there have been several 
references to the S-curve including [10] and [11]. In a recent 
study, [12] provided further statistical support for the S-curve, 
based on a nested Logit model for nonstop duopoly markets. 
The most commonly used mathematical expression for the S-
curve ([6], [9]) is given by, 
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where     is the market share of airline  ,     is the frequency 
share of airline  ,   is the number of competing airlines, and   
is a model parameter. 

Game-theoretic literature capturing the S-curve-based 
frequency competition is limited. Most of the previous studies 
involving game theoretic analysis of frequency competition, 
such as [13], [14], [15], [16], [17], [18] and [19], model market 
share using Logit- or nested Logit-type models, with utility 
typically being an affine function of the inverse of frequency. 
Depending on the exact values of the utility parameters, such 
relationships can be considerably different from the S-shaped 
relationship between market share and frequency share. In this 
research, we use one of the most popular characterizations of 
the S-curve model. Reference [18] modeled schedule and fare 
competition as a strategic form game for a sample problem 
comprising six airports and two airlines. Reference [13] 
modeled airline competition on fare, frequency and aircraft 
sizes as an extensive form game and presented equilibrium 
results for a network comprising four airports and two airlines. 
Neither of these studies provides any empirical justification of 
suitability of Nash equilibrium outcome. Reference [15] 
analyzed frequency competition in a hub-dominated 
environment using a strategic form game model and presented 
results for a large network of realistic size involving multiple 
airlines. This study reported significant disparities between the 
model predictions and the state of the actual system. Each of 
these three studies adopted a successive optimization approach 
to solve for a Nash equilibrium. In this paper, we also use a 
successive optimizations approach for the computation of a 
Nash equilibrium and provide empirical validation of our 
equilibrium predictions. 

In most of the previous research, scheduling decisions on 
one segment are not constrained by the schedule on other 
segments. (We define a segment as an origin and destination 
pair for nonstop flights.) This is a good approximation for a 
situation where an airport is not congested, and takeoff and 
landing slots are freely available. But some congested US 
airports and several major airports in Europe and Asia are slot 
controlled. With projected demand in the US expected to 
outpace the expansion of airport capacity, there is a possibility 
of many more airports in the US employing some form of 
demand management in the future. At a slot controlled airport, 
increasing the frequency of flights on one segment usually 
requires the airline to decrease the frequency on some other 
segment from that airport. To the best of the authors' 
knowledge, no previous study has incorporated such slot 
constraints into airline competition models. 



TABLE I.  TREND IN NUMBER OF PASSENGERS, FLIGHTS AND DELAYS 

Year 
Number of 

Passengers 
Number of Flights 

Total Arrival 

Delays to Flights 

(Minutes) 

2000 100.00 100.00 100.00 

2001 93.34 96.47 78.15 

2002 92.06 102.32 59.75 

2003 97.29 119.65 75.18 

2004 105.04 126.09 103.58 

2005 109.62 126.98 107.80 

2006 109.81 122.86 120.99 

2007 113.28 124.46 138.58 

2008 108.70 118.60 119.11 

2009 103.07 110.73 91.82 

The main contributions of this paper are threefold. First, we 
propose a model of airline frequency competition which is (a) 
compatible with the S-curve relationship between market share 
and frequency share, and (b) captures airport slot constraints. 
Second, we provide empirical validation of our model using 
actual frequency data. Finally, using this model, we evaluate 
two different administrative slot allocation schemes from the 
perspectives of airlines and passengers. The rest of the paper is 
organized as follows. Section III describes the game theoretic 
model of airline frequency competition. Section IV provides a 
detailed description of the data used for the numerical 
experiments and empirical validation results. Section V 
describes two different schemes for distributing the available 
slots among different airlines. Section VI describes the 
numerical experiments and results. Finally, section VII 
concludes the paper with a summary and discussion of the 
main results. 

III. GAME THEORETIC MODEL 

This section explains the relevant mathematical notations 
and describes the model. In sub-section A, we describe the 
basic model of airline frequency competition based on the S-
curve as an optimization problem for an airline. In sub-sections 
B and C of this section, we present two important extensions of 
this model. Sub-section D briefly discusses the solution 
algorithm. 

A. Basic Model 

Consider an airline operating at a slot-controlled airport. A 
slot available to an airline can be used for a flight to or from 
any other airport, but the total number of slots available to each 
airline is limited. We will consider only the flight departures 
from a slot controlled airport and assume that the airports at the 
other end are not slot controlled. This assumption is quite 
reasonable in the US context, where only a handful of airports 
are slot constrained. We focus only on the daily allocation of 
slots while ignoring the time-of-the-day aspects. 

To begin with, we consider frequency planning decisions 
while assuming that the aircraft sizes remain constant for each 
segment. We will analyze the impact of this assumption later, 
in sub-section D of section VI, by partially relaxing this 

assumption. We propose a multi-player model of frequency 
competition where each airline is a player and each airline's 
decision problem is represented as an optimization problem. 
From here onwards, this model will be referred to as the basic 
model. In this basic model, the only decision variables are the 
numbers of nonstop flights of the airline on each segment with 
origin at the slot controlled airport. This basic model is 
applicable for situations where the fares and other factors are 
similar among the competing airlines and the main 
differentiating factor between different airlines is the service 
frequency. 

Let    be the set of potential segments for airline   with 
origin at the slot controlled airport. Let     be the average fare 
charged by airline   on segment  . Let     be the number of 
passengers carried by airline   on segment   . In general, a 
passenger might travel on more than one segment to go from 
his origin to destination, which in some cases involves 
connecting between flights at an intermediate airport. 
However, we will assume segment-based demand, that is, a 
passenger traveling on two different segments will be 
considered as a part of the demand on each segment. This 
assumption is quite reasonable for the airports in New York 
city area where nearly 75% of the passengers are nonstop [20], 
but not very accurate for major transfer hubs such as the 
Chicago O'Hare airport. Let the total passenger demand on 
segment   be   .     is the operating cost per flight for airline 
  on segment  .     is the seating capacity of each flight of 
airline   on segment  . Let    be the exponent in the S-shaped 
relationship between the market share and the frequency share 
on the nonstop segment   . The value of    depends on the 
market's characteristics such as long-haul/short-haul, 
proportion of business/leisure passengers, etc. 

The vector of decision variables for airline   is          . 

Because the origin airport is slot constrained, the maximum 
number of flights that can be scheduled by airline    is 
restricted to   . Often, under the current set of administrative 
policies based on use-it-or-lose-it type rules, there are 
restrictions on the minimum number of slots that must be 
utilized by an airline in order to avoid losing slots for the next 
year. So there may be a lower limit on the number of slots that 
must be used. Let    be the minimum number of slots that 
must be utilized by airline  . Let   be the set of all airlines 
and let    be the set of airlines operating flights on segment  . 

As defined by the S-curve relationship, the market share of 

airline   on nonstop segment   is     
         

  
     

  , 

which provides an upper bound on the number of passengers 
for a specific carrier on a specific segment. This restriction is 
imposed by constraint (3) in the model that follows. 
Obviously, the number of passengers on a segment cannot 
exceed the number of seats. Moreover, due to demand 
uncertainty and due to the effects of revenue management, the 
airlines are rarely able to sell all the seats on an aircraft. 
Assuming a maximum average segment load factor of      , 
the seating capacity restriction is modeled by constraint (4). 
We present results assuming 85% as the maximum average 
segment load factor value. We test the sensitivity of the results 
to variations in this value later in sub-section C of section VI. 
The objective function (2) to be maximized is the total 



operating profit, which is total fare revenue minus total flight 
operating cost. The overall optimization model is as follows, 
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The market share of each airline depends on the frequency 
of other competing airlines in the same market, which in turn 
are decision variables of those other airlines. Therefore, this is 
multi-agent model. The optimization problem given by (2) 
through (7) can only be solved for a given set of values of 
competitors' frequencies. 

We now propose two extensions to the basic model. The 
first extension is applicable to segments where the competing 
carriers differ in terms of fare charged or in some other 
important way. The second extension is applicable to segments 
on which only one carrier currently operates nonstop flights. 

B. Extension I: Fare Differentiation 

The basic model assumes that the market share on each 
segment depends solely on the frequency share on that 
segment. This assumption is reasonable in many markets where 
the competitor fares are very close to each other and the 
competing airlines are similar from the perspectives of the 
passengers in other ways. However, for markets where the 
fares are different, the basic S-curve relationship can be a poor 
approximation of actual market shares. Consider a market 
where the competing airlines are differentiated in both fare and 
frequency. Different types of the passengers would react 
differently to these attributes. While some passengers value 
lower fares more, others give more importance to higher 
frequency and the associated greater flexibility in scheduling 
their travel. In addition, there could be other airline-specific 
factors that impact the passenger share. For example, some 
passengers might have a preference for the big legacy carriers 
operating wide-body or narrow-body fleets over the regional 
carriers operating turbo-prop aircraft or small regional jets. To 
incorporate these effects, we propose an extension of inequality 
(3). Let there be   types of passengers. Let   

  be the fraction of 
segment   passengers belonging to type  , such that    

  
    

 . Let   
  be the frequency elasticity of type   passengers, 

which serves the same purpose as the exponent of the S-curve 
in the basic model. Let   

  be the fare elasticity of type   
passengers. Obviously, we expect   

  to be non-negative and   
  

to be non-positive. Let    be the airline specific factor for 
airline  . Inequality (3) can then be extended as, 

 

      
     

  
 
   

  
 

        
  
 

    
  
 

     

 

   

  
    (8) 

The market share of each airline is now a function the fares, 
frequencies, and airline specific factors of all competing 
airlines. This model incorporates the effects of different fares 
and frequencies on the passenger shares. Also, it can model 
multiple passenger types such as leisure vs. business, by 
specifying different fare and schedule elasticities for different 
type of passengers. Finally, the remaining airline specific 
factors are captured through the    parameter. 

C. Extension II: Market Entry Deterrence 

This second model is similar to the basic model except that 
the player decisions are now sequential rather than 
simultaneous. The idea of modeling the frequency competition 
as an extensive form game was proposed by Wei and Hansen 
[16] where, for contractual or historical reasons, one airline has 
the privilege of moving first, that is, deciding the frequency on 
a segment. The other airline responds upon observing the 
action by the first player. The basic model and the first 
extension implicitly assumed the existence of at least two 
competing airlines on a segment. However, frequency 
decisions in markets with only one existing airline are not 
completely immune to competition and the incumbent airline 
must account for the possibility of entry by another competitor 
while deciding the optimal frequency. Such situations can be 
modeled using the idea of Stackelberg equilibrium [21] or a 
sub-game perfect Nash equilibrium of an extensive form game. 
In this situation, the incumbent carrier is the Stackelberg leader 
and the potential entrant is the follower. A potential new 
entrant is denoted by   . Inequality (3) can be extended as, 
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D. Solution Algorithm 

Computation of a Nash equilibrium solution entails 
computing the frequency decisions of all the airlines such that 
the decision of each airline is optimal corresponding to the 
equilibrium decisions of all the other airlines. The 
computation of the optimal decisions by each airline, in itself, 
is a discrete optimization problem whose continuous 
relaxation is non-linear and non-convex. The total strategy 
space for a typical problem size is of the order of     . To 
solve this problem, we propose a heuristic based on the idea of 
myopic best response, which employs successive 
optimizations, and individual optimization problems are 
solved to full optimality using a dynamic programming-based 
technique. For a full description of the solution algorithm, its 
computational performance and convergence properties, the 
reader is referred to [22]. 



IV. DATA AND MODEL VALIDATION 

All the numerical results correspond to LaGuardia (LGA) 
airport, which has traditionally been one of the few slot 
controlled airports in the United States. The data on existing 
frequencies, average fares, aircraft sizes and segment 
passengers is obtained from the BTS website [4]. We 
conducted the validation as well as the numerical experiments 
described in section VI using data corresponding to a weekday 
in January 2008. 

For all segments where only one carrier provides nonstop 
service, we use the market share function given by model 
extension 2. We use the market share function given by model 
extension 1 for segments on which: 1) the competitors' average 
fares differ by more than 5%; and/or 2) one or more major 
carriers operating a narrow- or a wide-body fleet compete 
against one or more regional carriers operating small jets. For 
all the other segments, we use the market share function given 
by inequality (3) in the basic model. 

We validate the equilibrium frequencies predicted by the 
model using actual schedule data obtained from the BTS 
website [4]. We use data from LaGuardia airport at New York 
and compare the equilibrium frequencies predicted by our 
model against the actual values of frequencies. At LaGuardia 
airport, the maximum number of slots for each airline is 
restricted and each airline usually wants to make use of all the 
slots available to it in order to avoid losing any slots in the 
subsequent season. The minimum and maximum numbers of 
slots available to an airline, that is,    and    are assumed to 
be equal. Therefore, for our experiments, we assume that the 
total number of slots allocated to each airline is fixed. The 
airline needs only to decide the number of slots to allocate to 
flights to each of its destinations. Let     be the actual 

frequency of airline   on segment   and      be the equilibrium 
frequency as predicted by our model. The model ensures that 
the total frequency for each airline remains constant. 
Therefore, when the model overestimates the frequency on 
one segment it necessarily underestimates the frequency on 
some other segment corresponding to the same carrier. In 
order to avoid double counting of error, we define a measure 
of error particularly suitable for such situations. The mean 
absolute error (MAE) is defined as, 
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The actual frequency and the frequency estimated by our 
model for each carrier to each destination is presented in Fig. 1 
on the x-axis and y-axis respectively. The overall MAE was 
found to be 7.2%. The model predictions thus match actual 
frequencies reasonably well. 

V. SLOT ALLOCATION SCHEMES 

In this section, we describe two simple strategies for 
allocating the available slots among different airlines and 
evaluate the performance of each strategy under the Nash 
equilibrium modeling framework. 

 
Figure 1.  Empirical validation of frequency predictions. 

A. Proportionate Allocation 

Under the existing administrative controls, airlines often 
receive a similar number of slots from year to year. Historical 
precedent is usually used as the main criterion for slot 
allocation. There is opposition from the established carriers to 
any significant redistribution of slots. In the spirit of 
maintaining much of the status quo, our first slot distribution 
strategy involves proportionate allocation of slots. We vary the 
total number of slots at an airport while always distributing 
them among different carriers in the same ratio as that of 
actual flight schedules. For example, if the total number of 
slots at an airport is reduced from 100 to 80 and if the 100 
slots were distributed as 40 and 60 between two carriers, then 
under our proportionate allocation scheme, the 80 slots will be 
distributed as 32 and 48 between the same two carriers.  

B. Reward-based Allocation 

While the proportionate allocation scheme is likely to be 
considered more acceptable by major carriers, it ignores the 
level of efficiency with which an airline utilizes its slots. 
Airlines differ, often substantially, in the number of passengers 
carried per flight or per slot. The idea behind the reward-based 
allocation is to reward those airlines which carry more 
passengers per slot, due to larger planes and/or higher load 
factors, and penalize those who carry fewer passengers per slot. 
Under this scheme, the number of slots allocated to each airline 
is proportional to the total number of passengers carried by that 
airline. In the previous example, if the first airline currently 
carries 140 passengers per slot and the second airline currently 
carries 120 passengers per slot, then under our reward-based 
allocation scheme, when the total number of slots is reduced to 
80, the first airline will receive 35 slots and the second airline 
will receive 45 slots. 



VI. NUMERICAL RESULTS 

We performed two different experiments which are 
described in sub-sections A and B of this section. Sub-section 
C provides the sensitivity of the results to our assumption of 
the maximum load factor value. Sub-section D describes the 
impact of relaxing the constant aircraft sizes assumption. 

A. Experiment I 

In the first experiment, we varied the total number of 
allocated slots at LaGuardia and studied the impact on two 
important metrics, namely, the total operating profits of all the 
airlines and the total number of passengers carried. Fig. 2 and 3 
show the change in total operating profits of all the airlines 
with slot reductions under the proportionate and reward-based 
allocation schemes, respectively. Fig. 4 and 5 show the change 
in the total number of passengers carried, assuming that the 
aircraft type (and seating capacity) for each airline on each 
segment remains unchanged upon slot reduction. The total 
number of passengers carried decreases as the number of slots 
decreases, but at a much lower rate. For the proportionate 
allocation scheme, up to a 35% slot reduction, each 1% 
reduction in slots leads to, on average, just a 0.38% reduction 
in the total passengers. A 35% reduction in slots leads to 
approximately 13% reduction in total passengers. Beyond 35%, 
each 1% reduction in slots leads to slightly over 1% reduction 
in total passengers. Also, the total operating profits for the 
proportionate allocation strategy increase with increasing slot 
reduction percentage up to 35%. Beyond that point, the 
operating profit starts to decrease. Very similar patterns are 
observed for the reward-based allocation strategy. Up to a 40% 
reduction in slots, each 1% reduction in slots leads to, on 
average, just a 0.27% reduction in the total passengers. A 40% 
slot reduction results in less than an 11% reduction in total 
passengers. However, beyond that point, the rate of reduction 
in total passengers is close to 1, similar to that in the 
proportionate reduction case. Similarly, total operating profit 
increases up to a 40% reduction and decreases thereafter. 

 
Figure 2.  Total operating profit as a function of slot reductions under a 

proportionate allocation scheme assuming constant aircraft sizes. 

 
Figure 3.  Total operating profit as a function of slot reductions under a 

reward-based allocation scheme assuming constant aircraft sizes. 

 
Figure 4.  Total number of passengers carried as a function of slot reductions 

under a proportionate allocation scheme assuming constant aircraft sizes. 

These effects are easy to understand intuitively. Given that 
aircraft sizes remain constant, the initial reduction in the 
number of slots results primarily in increases in load factors 
and hence, under our constant fares assumption, operating costs 
decrease at a faster rate than the rate of decrease in total 
revenue. So the operating profit increases. This effect continues 
until a point where the aircraft size constraint becomes binding 
and reduces the number of passengers almost proportionally to 
the number of slots. Therefore the operating revenue decreases 
at almost the same rate as the operating cost decrease, causing 
the operating profit to decrease. As the total number of slots 
decreases, the congestion and delays also decrease. 



 
Figure 5.  Total number of passengers carried as a function of slot reductions 

under a reward-based allocation scheme assuming constant aircraft sizes. 

B. Experiment II 

In our second experiment, we fixed a particular level of slot 
reduction and evaluated its system-wide impacts on the airlines 
(both individually and as a group), and on the passengers, 
based on multiple metrics. We considered the impact on the 
following metrics: airline operating profits, average flight 
delays, average passenger delays, total number of passengers 
carried, and average schedule displacement for passengers. The 
airport capacity benchmark report published by the Federal 
Aviation Administration (FAA) [23], sets the IFR (Instrument 
Flight Rules) capacity, that is, the bad-weather capacity, of 
LaGuardia airport at approximately 87.7% of its good-weather 
capacity. Currently, the number of operations scheduled at 
LaGuardia is close to the good-weather capacity. We chose to 
evaluate the case of a 12.3% reduction in slots, which 
approximately corresponds to scheduling at the IFR capacity 
instead of at the good-weather capacity. 

Next, we describe the procedures used to estimate the 
average flight delays, the average passenger delays and the 
average schedule displacement. In order to estimate the impact 
on the average flight delays, we used the estimates of realized 
capacity values for an entire year (made available from Metron 
Aviation®) and actual flight delay data (obtained from the 
airline on-time performance database available on the BTS 
website [4]). While the number of operations currently 
scheduled at LaGuradia is close to its good-weather capacity, 
realized capacity drops to the IFR value during bad weather. 
Using the data on realized capacities and flight delays, the 
average delays to flights landing at LaGuardia are calculated 
for both good and bad weather conditions. We approximated 
the average flight delays under IFR capacity when the number 
of scheduled operations also equals the IFR value by the 
average flight delays under the good-weather capacity when the 
number of scheduled operations also equals the good-weather 
capacity value. After the 12.3% slot reduction, the average 
flight delays under the good weather conditions will be lower 
than those under good weather conditions without slot 
reduction. However, in order to be conservative in our delay 

reduction estimates, we assumed that the average delays under 
good weather conditions remain unchanged upon slot 
reduction. Finally, we calculated the overall average flight 
delay as the expected value of delays under good- and bad-
weather capacity. 

In addition to flight delays, passenger itinerary disruptions 
due to flight cancellations and missed connections are 
responsible for a significant component of passenger delays. 
Reference [24] estimated that the ratio of average passenger 
delay to average flight delay in the domestic US for the entire 
2007 year was 1.97. We used this value for computing the 
average passenger delays from the average flight delays. 

The total trip time for the passengers is also affected by 
what is known as schedule displacement [6]. Schedule 
displacement is a measure of the difference between the time 
when a passenger wishes to travel and the actual time when 
he/she can travel given a flight schedule. The higher the daily 
frequency of flights, the lower is the schedule displacement. 
Due to slot reduction, the flight frequency on some segments is 
expected to reduce, which affects schedule displacement 
adversely. Schedule displacement is expressed as    , where 
  is the flight frequency and   is a constant which depends on 
the distribution of flight departure times and the distribution of 
desired times when passengers wish to travel. In this research, 
we will assume both these distributions to be uniform, which 
means that   equals    , where   is the time duration over 
which frequency   is distributed. Flight departures from 
LaGuardia are distributed between 6 am and 10 pm. So we will 
assume   to be 16 hours. 

Table II summarizes the impacts of slot reduction to airlines 
and passengers based on various metrics. These results 
correspond to a 12.3% reduction in slots for both proportionate 
and reward-based allocation strategies, and the values in 
parentheses indicate the percentage change in each metric. The 
level of congestion depends on the total number of slots and 
not on the distribution of these slots among different airlines. 
Therefore, the delay reduction is the same under both 
proportionate and reward-based slot allocation strategies. 
Under either strategy, slot reductions lead to substantial 
reductions in average flight delays as well as average passenger 
delays. The total operating profits across of all carriers increase 
substantially. There is a small reduction in the total passengers 
carried. However, this is partly because we have assumed that 
aircraft sizes on each segment for each airline remain 
unchanged upon slot reduction. We will investigate the impact 
of relaxing this restriction partially in section 5.2.  The average 
schedule displacement increases by just over 2 minutes. The 
total travel time for passengers departing from LaGuardia 
airport includes not only the schedule displacement and the 
duration of the flight out of LaGuardia, but also the airport 
access and egress times, and in cases of connecting passengers, 
the layover times and duration of the second flight. For flights 
out of LaGuardia airport, the average flight duration itself is 
185.38 minutes. Therefore, in comparison, the increase in 
schedule displacement is negligibly small. 

Table III presents the distribution of operating profits across 
different carriers. Again, the values in parentheses represent the 
percentage increases in profits. When the total number of slots 



is reduced under either allocation strategy, the operating profit 
of each carrier increases compared to that under the no slot 
reduction scenario. The relative increase in operating profits is 
largest for the two regional carriers (RC 1 and RC 2) operating 
small regional jets out of LaGuardia airport. This is primarily 
because they had very low operating profit margins out of 
LaGuardia under the no slot reduction scenario. In fact, for one 
of regional carriers, the slot reduction helps achieve an 
operating profit instead of an operating loss, which is the case 
under the no slot reduction scenario. On the other hand, the 
network legacy carriers (NLC 1, NLC 2, NLC 3, NLC 4, NLC 
5, and NLC 6) achieve the maximum absolute increase in 
operating profit per carrier. This is primarily because the 
average number of slots per day for network legacy carriers 
(36.83) itself is nearly 50% higher than that for the remaining 
carriers (24.50), and the average operating profit for the 
network legacy carriers per day ($188,602) are much higher 
than that for the remaining carriers ($26,501) under the no slot 
reduction scenario. The four low cost carriers are denoted by 
LCC 1, LCC 2, LCC 3, and LCC 4. 

C. Sensitivity to the Maximum Load Factor Assumption 

These results are obtained assuming a maximum average 
segment load factor (     ) of 85%. Now, we will present 
results on the sensitivity of slot reduction impacts to this 
assumption. We will focus on the sensitivity of the results of 
the second experiment. Table IV describes the sensitivity of 
total operating profits and total number of passengers carried 
to variations in the maximum average segment load factor 
value. Obviously, the average flight delays, average passenger 
delays and average schedule displacements do not change, 
because they depend only on the scheduled number of flight 
operations. The increase in total operating profit varies 
between 14.33% and 22.79%, and the decrease in number of 
passengers varies between 0.41% and 2.52%. Due to the 
integrality constraints on the number of slots, the results don't 
vary smoothly. 

D. Impact of Limited Aircraft Upgauging 

Results in experiments I and II were obtained under the 
assumption that, even when the total number of slots available 
to an airline is reduced, the airline will continue to operate the 
same-size aircraft as it did in the absence of slot reduction. This 
assumption might be realistic for very small reductions in the 
number of slots, but for significant reductions, it is reasonable 
to expect that the airlines will operate larger aircraft on some of 
the segments in order to accommodate more passengers and 
therefore increase profit. The main problem with modeling 
aircraft size decisions is that such decisions depend on the fleet 
availability. We estimate the impact of aircraft size upgauges 
by allowing for the possibility of a limited number of upgauges 
for each airline. We sort all the available types of aircraft 
operated out of LaGuardia by any of the airlines in increasing 
order of seating capacity. We allow a certain maximum 
percentage of an airline's fleet (operating out of LaGuardia 
airport) to be upgauged to the next bigger-sized aircraft. This 
constraint indirectly models the fact that an airline cannot 
arbitrarily increase aircraft sizes due to fleet availability 
constraints. We calculate the equilibrium frequency solution 
under the slot reduction scenario as described in section 5.1 and 
subsequently perform, for each airline, the most profitable 

aircraft upgauges subject to the limits on maximum allowable 
upgauge percentage. As before, we assume a maximum 
average segment load factor of 85%. 

Fig. 6 describes the impact of a limited number of aircraft 
upgauges on the reductions in total passengers when the total 
number of slots is reduced by 12.3%, and the proportionate 
allocation strategy is used. The maximum allowable upgauge 
percentage is on the x-axis, which represents the maximum 
percentage of an airline's flights that can be upgauged to the 
next bigger aircraft size. The percentage reduction in the total 
number of passengers varies from 2.27%, when no upgauges 
are allowed, to 0.88% when at most 20% upgauges are allowed 
for each airline. This shows that even with a small fraction of 
flights upgauging to a larger-sized aircraft, most of the 
reduction in the number of passengers disappears. The 
remaining reduction in the number of passengers is primarily 
attributable to the fact that there is only a limited number of 
aircraft sizes available; and on some segments, the number of 
passengers who are denied a seat due to a smaller aircraft size 
is not large enough to justify a profitable upgauge to the next 
bigger aircraft size. 

TABLE II.  EFFECT OF 12.3% SLOT REDUCTION 

Metrics 
No 

Reduction 

12.3% Reduction 

Proportionate Reward-based 

Total Operating 

Profitsa
 

$1,237,623 
$1,475,217 

(19.20%) 

$1,446,520 

(16.88%) 

Avg. NAS Delay 

per Flight 
12.74 min 

7.52 min 

(-40.97%) 

7.52 min 

(-40.97%) 

Total Passengers 

Carried 
22,184 

21,680 

(-2.27%) 

21,728 

(-2.05%) 

Avg. Passenger 

Delayb 
25.10 min 

14.81 min 

(40.97%) 

14.81 min 

(40.97%) 

Avg. Schedule 

Displacement 
25.35 min 

27.58 min 

(8.8%) 

27.55 min 

(8.7%) 

a. Excluding flight delay costs. b. Due to NAS delays. 

TABLE III.  INCREASE IN OPERATING PROFITS DUE TO A 12.3% SLOT 

REDUCTION 

Carriers 
No 

Reduction 

12.3% Reduction 

Proportionate Reward-based 

NLC 1 $366,592 $416,322 (13.45%) $406,107 (10.67%) 

LCC 1 $48,061 $59,507 (23.82%) $59,507 (23.82%) 

NLC 2 $65,996 $74,466 (12.83%) $70,581 (6.95%) 

NCL 3 $196,215 $252,231 (28.55%) $252,900 (28.89%) 

LCC 2 $39,694 $46,632 (17.48%) $48,331 (21.76%) 

RC 1 $19,831 $31,318 (57.92%) $29,831 (50.43%) 

NLC 4 $112,578 $143,084 (27.10%) $130,316 (15.76%) 

RC 2 - $1,579 $39,126 (n.a.) $40,582 (n.a.) 

NLC 5 $208,020 $224,697 (8.02%) $218,922 (5.24%) 

NLC 6 $181,855 $187,834 (3.29%) $189,443 (4.17%) 



TABLE IV.  SENSITIVITY OF SLOT REDUCTION IMPACTS TO THE 

MAXIMUM AVERAGE SEGMENT LOAD FACTOR VALUE UNDER A 12.3% SLOT 

REDUCTION 

Maximum 

Average 

Segment 

Load Factor 

Change in Total Profits 
Change in Total 

Passengers Carried 

Proportion

ate 

Reward-

based 

Proportion

ate 

Reward-

based 

75% 15.83% 14.33% - 2.44% - 2.23% 

80% 17.39% 17.55% - 2.52% - 1.94% 

85% 19.20% 16.88% - 2.27% - 2.05% 

90% 22.79% 16.44% - 0.41% - 1.49% 

95% 18.90% 17.59% - 1.82% - 0.94% 

 

 
Figure 6.  Effect of limited upgauging on total number of passengers under a 

12.3% slot reduction. 

VII. CONCLUSION 

A slot control strategy involves deciding the (a) total 
capacity to be allocated and (b) the distribution of this capacity 
across different airlines. For a given slot distribution across 
airlines, each airline decides the frequency of flights in 
different markets with due consideration to competing carriers’ 
frequency decisions. To the best of the authors' knowledge, this 
is the first study that tries to model airline competition under 
slot constraints. We developed a game theoretic model of 
airline frequency competition based on the S-curve, which is a 
popular model of market share in the airline literature. We 
justified the predictive power of the Nash equilibrium solution 
concept using empirical validation of the model estimates 
under existing slot allocation. 

We evaluated two different slot reduction strategies. The 
results showed that in addition to a substantial reduction in 
flight and passenger delays, small reductions in total allocated 
capacity can improve the operating profits of carriers 
considerably. While the two strategies led to some differences 
in the actual profitability increases across individual carriers, 
the aggregate impacts were similar. Under each strategy, slot 
reduction led to a substantial increase in the profits of all 

carriers across the board, and substantial reductions in flight 
delays and passenger delays. It also led to a small reduction in 
the number of passengers carried. However, most of the 
reduction in total passengers carried was eliminated when the 
possibility of a limited number of aircraft upgauges was 
introduced. The increase in schedule displacement due to the 
slot reduction was negligibly small compared to the overall 
travel times of the passenger. 

Thus a small reduction in the total number of slots at 
congested airports is beneficial to the carriers, all of whom 
experience reductions in delay costs as well as increases in 
planned operating profits. It also benefits the passengers, 
almost all of whom get transported to their respective 
destinations, with negligible increases in schedule displacement 
and significantly lower average passenger delays. It is also 
beneficial to the airport operators because congestion and 
airport delays are reduced substantially. From the perspective 
of the entire system, slot reduction strategies lead to almost all 
passengers being transported with fewer flights, less delays, 
and lower total cost. Hence, slot reduction strategies are also 
attractive from the perspective of overall social welfare. 
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