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Introduction & motivation
üAir traffic demand is anticipated to increase

üNational Aviation System (NAS) infrastructure is operating 

at near capacity

üDelays in the NAS are likely to increase

üWeather is the largest contributor to delays

üStrategic decisions take place around 2 hours in advance
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Delay reduction in the National Aviation System

üProvide good weather capacity in bad weather

üIncrease infrastructure capacity

üBetter navigation and equipment 

üDecrease current operations

üImprove decision making under weather uncertainty

ÅResearch focuses on a terminal

ÅTerminal arrival capacity is stochastic and dependant on several 

weather variables

ÅWeather provides a foundation for terminal capacity prediction

Improve decision making under weather uncertainty 

Introduction & motivation



Introduction & motivation

Research goal

Improve the service providerôs strategic decision making by 

effectively utilizing the day-of-operations weather forecasts

Research objectives

Develop probabilistic capacity scenarios using 

the day-of-operations weather forecast. 

Develop a methodology to assess the performance of the probabilistic 

capacity scenarios
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Current practice

?

Current practice uses judgment, experience and stakeholderôs 

preferences

No formal mechanism to address the uncertainty associated with the 

forecast 

Strategic 

decisions

Demand 

projections + 

weather forecasts



Literature review on ATFM 

models

Existing framework in literature

Demand and 
cost ratio (˂ )

Air Traffic 
Flow 

Management 
(ATFM) 
models

Strategic decisions

ÅAir delays

ÅGround delays

Uncertainty in 
the terminal 

capacity



Literature review on terminal 

capacity uncertainty

Uncertainty at terminal capacity is represented by multiple time series of 
capacity associated with a probability  (prob. capacity scenarios)
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ÅOperations Research (OR) 
and finance community

ÅModel the possible future 
evolution of a random 
variable

ÅAssociated with a 
probability of occurrence 



Literature review on terminal 

capacity uncertainty

In Air Traffic Flow Management (ATFM)

ÅRandom variable is terminal arrival 
capacity, Airport Acceptance Rate 
(AAR)

ÅA time series of AAR values 
associated with a probability

ÅInputs into an ATFM model that 
minimize expected delay costs

Scenarios

ÅOperations Research (OR) 
and finance community

ÅModel the possible future 
evolution of a random 
variable

ÅAssociated with a 
probability of occurrence 

Uncertainty at terminal capacity is represented by multiple time series of 
capacity associated with a probability  (prob. capacity scenarios)



Literature review on terminal 

capacity uncertainty

Probabilistic capacity scenarios used in Air Traffic Flow 
Management (ATFM) models

Artificial data, for illustrative purposes

ATFM models

ÅCook & Wood

ÅRichetta& Odoni

ÅMukherjee& 
Hansen

ÅBall et al. 



Literature review on terminal 

capacity uncertainty

Probabilistic capacity scenarios generated from capacity data

Kmeansclustering on the historical AAR capacity 

No current methodology uses the weather 
forecast to develop specific day-of-

operation probabilistic capacity scenarios



Contribution to literature

Demand and 
cost ratio (˂ )

Air Traffic 
Flow 

Management 
(ATFM) 
models

Strategic decisions

ÅAir delays

ÅGround delays

Probabilistic 
capacity 
scenarios

Weather forecasts 
+ historical 

capacity data
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ÅStatic Stochastic Ground Delay Model (SSGDM)

ÅPlans efficient ground delays for the terminal airport

ÅDecisions once made can not  be revised as more 
information is revealed

ÅCompatible in Collaborative Decision Making (CDM) 
environment

ÅDetermines an arrival rate for the airport

ÅEnables Ration by schedule. 

ÅAllows substitution, cancellation and compression 

ÅRequires probabilistic capacity scenarios as inputs 

ÅBasis for validating the scenarios which are developed

Air Traffic Flow Management 

model



Static Stochastic Ground Delay 

Model

Determines optimal ground delay decisions

Requires probabilistic capacity scenarios and demand
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Ground delay (GD) taken by the flights at the origin airport

Static Stochastic Ground Delay 

Model
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Static Stochastic Ground Delay 

Model
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Airborne delay (AD1) due to insufficient capacity in Scenario 1. 
Occurs with probability P1
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Static Stochastic Ground Delay 

Model

No air delay in scenario 2!!
Occurs with probability P2 
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Static Stochastic Ground Delay 

Model

Theoretical delay cost = GD + ˂ E (AD) = GD+ ˂ (AD1 * P1 + 0 * P2)
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Static Stochastic Ground Delay 

Model

Key Contributions

ÅTo determine capacity scenarios 
and probabilities from historical 
capacity data and weather forecasts

ÅMethod of assessing the 
performance of the scenarios in real 
world application



Static Stochastic Ground Delay 

Model
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Method of assessing the performance of the scenarios in real 
world application

1.Consider a historicalday and 
assumewe have developed the 
scenarios for that day

2.Using the demand and the 
scenarios, determine the PAAR 
from the SSGDM

3.Recall the SSGDM outputs the 
PAAR (efficient ground delays 
and expected air delay)Scheduled arrivals

PAAR



Static Stochastic Ground Delay 

Model
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Method of assessing the performance of the scenarios in real 
world application

4. Since it is a historical day, we know 
the realized capacity on that day at 
the airport.

(Equivalent to saying that today we 
ƪƴƻǿ ȅŜǎǘŜǊŘŀȅΩǎ ŎŀǇŀŎƛǘȅΣ ƛΦŜΦ ǿŜ 
know the historical capacity but DO 
bh¢ ƪƴƻǿ ǘƻŘŀȅΩǎ ŎŀǇŀŎƛǘȅύ

Realized capacity
Scheduled arrivals
PAAR



Static Stochastic Ground Delay 

Model
Method of assessing the performance of the scenarios in real 

world application

Realized Airborne 
Delay (RAD)
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4. Since it is a historical day, we know 
the realized capacity on that day at 
the airport.

5. We can determine the realized air 
delays using a simple queuing model 
between PAAR and the realized 
capacity

Realized capacity
Scheduled arrivals
PAAR



Static Stochastic Ground Delay 

Model
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Method of assessing the performance of the scenarios in real 
world application

Realized total delay cost (TC)
= Ground Delay + ˂ * RAD 

We assess the performance of 
the scenarios using the realized 
total delay cost (TC)

Ground 
delay

RAD

Realized capacity
Scheduled arrivals
PAAR



Static Stochastic Ground Delay 

Model
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Static Stochastic Ground Delay 

Model
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Day1 Day2 Day3 Day nΧΦ

Method of assessing the performance of the scenarios in real world application

Weather forecast ΧΦWeather forecast Weather forecast Weather forecast

Scenario generation
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Static Stochastic Ground Delay 

Model
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Scenario generation



Static Stochastic Ground Delay 

Model
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Method of assessing the performance of the scenarios in real world application
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Scenario generation



Static Stochastic Ground Delay 

Model
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Method of assessing the performance of the scenarios in real world application

Weather forecast ΧΦWeather forecast Weather forecast Weather forecast

Scenario generation

Static Stochastic Ground Delay Model

Demand 

Average realized total cost 

Realized 
total costs

Realized 
total costs

Realized 
total costs

Realized
capacity

Realized 
total costs
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Generating probabilistic capacity 

scenarios 

Four USAirports: SFO,LAX,BOS,ORD

Months: May,June,July,AugustandSeptember

Years: 2004, 2005, 2006

Numberof historicaldays(N): Ғ450

Timeduration: 7amς10pm (total of 60, 15minuteperiods)

Usingthe weather forecastsissuedfor the airport between5 am -7 am



Developed five methodologies for SFO to generate probabilistic capacity scenarios

Number Methodology
Historically 

realized
capacity

Weather 
Forecast

Additional 
reference 

1 PerfectInformation - Benchmark

2 Naïve Clustering Benchmark

3
Stratus Binning

(Uniquefor SFO)
STRATUS 
Forecast

4 TAFClustering
Terminal

Aerodrome 
Forecast

5
Dynamic TimeWarping 

scenarios

Terminal 
Aerodrome 

Forecast

Generating probabilistic capacity 

scenarios 



Generating probabilistic capacity 

scenarios 

1. Perfect Information

Time
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Scheduled arrivals
Realized capacity

üPredict exact capacity

üProbability is thus 1

üBest possible planning, 
lowest cost

üAll potential delays are 
ground delays



Generating probabilistic capacity 

scenarios 

Requires historical AAR data 
and no weather forecast data

üScenarios are representative 
AAR profiles for days that have 
similar capacity

üThe probability of a scenario 
is proportional to the number 
of days which have similar AAR 
profiles

2. No weather information, Naïve Clustering



Generating probabilistic capacity 

scenarios 
SFO Marine Stratus Forecast System (STRATUS)

Date
Predicted 
burn off 

time
P(10) P(11) P(12)

6/17/2004 11:31 0.05 0.3 0.65
6/20/2004 11:07 0.1 0.45 0.8

Actual 
burn off 

10:51

11:51

üSFO experiences fog during the summer months

üFog reduces visibility, in turn reducing landing capacity

üSTRATUS forecast product exclusively for SFO

ütǊŜŘƛŎǘǎ ǘƘŜ ŦƻƎ ŘƛǎǎƛǇŀǘƛƻƴ ǘƛƳŜΥ CƻƎ άōǳǊƴ ƻŦŦέ ǘƛƳŜ

üProbabilities of fog burn off before 10am, 11am and 
12 pm
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A scenario is a 
representative 
capacity profile 
for actual fog 
burn off in a 15 
minute period

Probabilities are 
obtained from 
the day of 
operations 
STRATUS forecast  

Generating probabilistic capacity 

scenarios 

3. Scenarios from STRATUS forecasts

Date
Predicted 
burn off 

time
P(10) P(11) P(12)

6/17/2004 11:31 0.05 0.3 0.65
6/20/2004 11:07 0.1 0.45 0.8



Generating probabilistic capacity 

scenarios 
Terminal Aerodrome Forecast (TAF)

KSFO 011121Z 011212 28006KT P6SM FEW010

TEMPO 1316 BKN010

FM1800 29010KT P6SM SCT200

FM2200 27018KT P6SM SCT200

FM0400 27010KT P6SM SKC

Date and Time of issue 
(1st and 1121Z)

Wind direction and 
speed (280o , 6Knots

Visibility (6 
Statute Miles)

Sky conditions (clouds and 
their height in 100s of feet ; 

scattered at 20,000feet)

Temporary forecast 
for 13Z-16Z

forecast for 24+4Z

üForecasts 7 metrological variables

üForecasts conditions up to 24 hours into the future

üForecast issued for all major US airports

Airport Code



Generating probabilistic capacity 

scenarios 
5. Dynamic Time Warping (DTW) Scenarios

[TAF]1

| Windx| Windy| Visibility| Scattered| Broken| Few| Overcast|

[TAF]2

| Windx| Windy| Visibility| Scattered| Broken| Few| Overcast|

[TAF]N

| Windx| Windy| Visibility| Scattered| Broken| Few| Overcast|

:

:

:
[TAF]DoO

| Windx| Windy| Visibility| Scattered| Broken| Few| Overcast|

Note: DoO: Day of Operation

(Similar TAFs shouldhave similar AAR profiles)
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60How similar is the day of operation TAF to the historical TAFs?



Generating probabilistic capacity 

scenarios 

Distance Measure for 
corresponding elements

Shortest Path 

üDeveloped for Speech Recognition

üData mining technique, compares multidimensional features 
vectors

ü Illustration

üCapacity scenarios are thus the actual AAR profiles of days 
having similar TAF
üThe probabilities of the capacity scenarios are inversely 

proportional to the distance of shortest path

5. Dynamic Time Warping (DTW) Scenarios



Generating probabilistic capacity 

scenarios 
5. Dynamic Time Warping (DTW) Scenarios
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Generating probabilistic capacity 

scenarios 
5. Dynamic Time Warping (DTW) Scenarios
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Generating probabilistic capacity 

scenarios 
5. Dynamic Time Warping (DTW) Scenarios

TS1

TS2

0 2 4 6 8 10 12 14 16
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Similarity (S) 

Controlling the degree of similarity by Dimension factor (DF)
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άDissimilarforecasts should be penalizedƳƻǊŜέ



Controlling the number of scenarios: Minimum Probability (Pmin)

ά¢ƘŜ ǇǊƻōŀōƛƭƛǘȅ ƻŦ ǘƘŜ ƭŜŀǎǘ ǎƛƳƛƭŀǊ ǎŎŜƴŀǊƛƻ ǎƘƻǳƭŘ ōŜ ƎǊŜŀǘŜǊ ǘƘŀƴ ŀ 
ƳƛƴƛƳǳƳ ǇǊƻōŀōƛƭƛǘȅ ǘƘǊŜǎƘƻƭŘέ

Time

Generating probabilistic capacity 

scenarios 
5. Dynamic Time Warping (DTW) Scenarios
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Design of experiments
Three variables influence similarity & warping, and number of 
scenarios 

Variable Values Effect

Weightingfactor
(WF)

Low values
Selectsdays which have similar 
forecasts for different periods

High values
Selectsdays which have similar 

forecasts for similar periods

Dimension factor
(DF)

Low values
Decreases sensitivity of scenario
probability to forecast similarity

High values
Increases sensitivityof scenario 
probability to forecast similarity

Minimumprobability 
(Pmin)

Low values Selectsmore scenarios

High values Selects fewer scenarios



Design of experiments

Capacity

Static Stochastic Ground 
Delay model

DTW 
Scenarios

PAAR

Scheduled 
arrivals 

and ‗ 

Deterministic queuing model to 
determine RAD and realized total 

cost

3 variables : WF, DF 
and Pmin

Determine variables 
(WF,DF and Pmin) 
which minimize 

average realized total 
costs

(Time = 20min)

(Time = 3min)

(Time = seconds)

Average realized total 
costs



Objective is to determine variables which minimizeaverage realized 
total costs

Optimization Problem : 

Objective function : Minimize average realized total costs

Decision Variables (DV): WF,DF and Pmin

ConstraintsΥ !ƭƭ 5± ŀǊŜ җ л ŀƴŘ Җ¦.Φ 

Challenges :
Objective function has no algebraic functional form 

Expensive function evaluations (23 minutes for a single evaluation): No SA or GA

Objective function might have multiple local minima  

Design of experiments



Stochastic Response Surface Method 
(Finds the global minima in a probabilistic sense)

Algorithm (Jones et al. 2001)
Step 0: Create and evaluate an initial combination of variable values
Step 1: Create a surrogate model using the evaluated points
Step 2: Select a new point using the surrogate model and evaluate it
Step 3: Go to step 1, unless a stopping criterion is met.

Step 0: Latin Hypercube sampling (sample to explore the objective function)

Step 1: Polynomial, Kriging, Smoothing splines, Loess (mimic the objective 
function)

Step 2: Balancing local and global searches (Key step)

Step 3: Stopping criterion 

Design of experiments



Design of experiments

When the algorithm terminates, it provides the lowest 
average total delay costsand the values of the three 
variables. 



Dynamic time warping scenarios for 6/23/2004 

Design of experiments
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Results

ÅResults are based on 45historicaldays

ÅFor these historicaldays, we have the demand, the weather 
forecasts and the realized capacity

(realized capacity is the capacity which was experienced at 
the airport on that day)

ÅAverage total realized cost, is the realized total cost averaged 
over the 45 days



Results

Airport PI Naïve TAF DTW STRATUS

(Naïve-

DTW)

/Naive

SFO

Average

total 

realized 

cost (GD 

minutes)

1447.5 3543.45 2916.75 2677.8 2733 25%

Bold italics : Statistically different from naïve at 0.1 level using a paired t ςtest

Weather forecast assist in planning of operations by lowering average realized costs

DTW gives the lowest cost amongst methodologies requiring forecast

DTW is 5% lower than STRATUS. TAF can assist in planning operations at other 
airports.

On average weather forecasts reduce cost by 25% for SFO

Imperfect information is doubling the costs of ground delay 



Results

Airport PI Naïve TAF DTW Stratus
(Naïve-DTW)

/Naive

SFO
Average  
realized 

TC
1448 3543.5 2916.75 2677.8 2733 25%

LAX
Average  
realized 

TC
306.15 621.6 626.25 573.9 - 9%

BOS
Average  
realized 

TC
2942 9249.6 8550.3 6449.55 - 30%

ORD
Average  
realized 

TC
12755 34801 33413 28996.5 - 17%

Bold italics : Statistically different from naïve at 0.1 level using a paired t ςtest

../ORD/analysis.xlsx


Airport Design Parameters

WF DF Pmin No. of 
Scenarios

SFO 1.57 0.79 .0023 350-400

BOS 6 2.5 .065 12-25

LAX 2 2.5 .055 12-22

ORD 4.74 2.27 0.043 15-25

Results

Designs are different for different airports

For Boston,  forecast for a period is compared to forecasts for 
nearby periods

For Boston, LAX and Chicago scenario probability is more sensitive 
to TAF similarity when compared to SFO. 

Optimal number of scenarios for SFO is higher than other airports



Results

Number of scenarios at the optimal design values

ORDSFO



Results
Realized costs (DTW Scenarios) - Realized costs(Naïve Clustering) Vs Cost under PI

SFO

-2500

-2000

-1500

-1000

-500

0

500

1000

R
e

a
l. 

co
st

(D
T

W
) ς

R
e

a
l. 

co
st

(N
a

ïv
e)

Cost under Perfect Information (ground delay min)

Capacity decreases

Cost (PI) increases



Results
Realized costs (DTW Scenarios) - Realized costs(Naïve Clustering) Vs Cost under PI

ORD

-50000

-40000

-30000

-20000

-10000

0

10000

R
e

a
l. 

co
st

(D
T

W)
 ς

R
e

a
l. 

co
st

(N
a

ïv
e)

Cost under Perfect Information (ground delay min)

Capacity decreases

Cost (PI) increases



Results
üA much simpler technique

üConstruct a single scenario using capacity percentiles for every 
time period

üUse this single scenario in the SSGHM and compares realized costs
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üA much simpler technique

üConstruct a single scenario using capacity percentiles for every 
time period

üUse this single scenario in the SSGHM and compares realized costs
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Conclusions
First research to generate probabilistic capacity scenarios from 
weather forecasts using several statistical methodologies

Developed a platform where these strategies can be tested

Demonstrated that scenarios generated with weather reduce the 
costs by 10%-30% in operations planning

The cost of imperfect information is nearly double with respect to 
costs under perfect information

In general DTW gives the lowest average costs

Showed that TAF can offer similar level of benefit as STRATUS



The end!
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Generating probabilistic capacity 

scenarios 
4. TAF Clustering

ÅRequires the historical TAFs and 
the historical realized capacity 

ÅDetermine groups of days which 
have similar TAF forecasts

ÅScenarios are the representative 
AAR profiles for the days which 
have similar weather forecasts

ÅProbabilities are the fraction of 
the days which have similar AAR 
profiles within a similar weather 
group

[TAF1, TAF2 .. , TAFN] 

TAF group 1 TAF group 2

AAR AAR

Scen1,1 Scen1,2

Scen2,1

Scen2,2

Scen2,3



4. TAF Clustering, scenarios for SFO
ÅA day of operation is classified according to its TAF in 

either one the groups

ÅDepending on the classification, the day would have 
either 2 or 3 scenarios

Generating probabilistic capacity 

scenarios 


